五、基于横盘结构的分析体系——缠论(买卖点)

买卖点

在缠论中,买卖点有基于均线的定义和基于中枢的定义。

一二三类买卖点——基于中枢的定义

一买(一卖反之)

第一类买点均线定义:

短期均线和长期均线最后一次死叉的低点

第一类买点中枢定义:

某级别的下跌趋势中,一个次级别走势类型跌破最后一个缠中说禅中枢形成的背驰点。

图1-34 一买需要中枢B的进入段b和离开段c形成底背离,同时次级别中枢cA的进入段ca和离开段cb形成底背离。

图1-35 趋势下跌的实例,中国中免2023年一月至2024年4月形成日线级别的趋势下跌;
图1-35 趋势下跌的实例,中国中免2023年一月至2024年4月形成日线级别的趋势下跌;30分钟级别形成趋势下跌。

二买(二卖反之)

第二类买点均线定义:

短期均线与长期均线第一次金叉后回调的低点

第二类买点中枢定义:

某级别中,第一类买点次级别上涨结束后,再次下跌的那个次级别走势的结束点

图1-36 某级别二买是绿色的次级别的下跌走势结束的位置。

图1-37 纳斯达克100指数2021年12月至2023年1月之间日线级别走势,红色的笔形成二买;
图1-37 纳斯达克100指数2021年12月至2023年1月之间日线级别走势,红色的笔形成二买;30分钟级别下跌走势构筑日线的二买。

三买(三卖反之)

第三类买点均线定义:

短期均线上穿长期均线,短期均线回调打平并未与长期均线交叉直接上涨前的低点

第三类买点中枢定义:

某级别上涨趋势中,一个次级别走势类型向上离开缠中说禅走势中枢,然后以一个次级别走势类型回抽,其低点不跌破中枢上边缘的中枢破坏点(ZG)。

图1-38 上涨走势的三买,中枢A的离开段突破中枢并回调不进入中枢A形成的买点。

图1-39 国药一致2022年10月至2023年4月的上涨走势,三买位于中枢之上。

一二三类买卖点的特点

缠论完整的理论走势图

图1-40 缠论完整的理论走势图,二买和三买是通常

图1-41 国药一致2022年8月至2024年1月的走势图,上涨和下跌的三类买卖点。

一买

优点:持仓成本低,利润空间最大,适合轻仓建仓。

缺点:准确率较低,安全性最低,时间成本最高;未出现走势反转,有较大概率出现背驰后又创新低,大多数情况还需要经过横盘震荡。

二买

优点:持仓成本较低,利润空间较大,准确率较高,安全性较高,适合重仓。

缺点:时间成本较高;中枢震荡概率较大,浮盈后回测较大。

三买

优点:时间成本低,利润空间较大,上涨迅速,适合轻仓。

缺点:准确率较低,持仓成本高,安全性较低。三买后很多情况会出现一卖或二卖,准确率不高。

一二三买卖点总结

准确率比较高的是二买

效率最高的是三买

### 使用Python实现论股票市场分析 #### 论简介及其重要性 论作为一种复杂的技术分析方法,在中国股市中被广泛应用。该理论提供了独特的视角来解读市场的结构化运动,有助于投资者识别卖机会并管理风险[^1]。 #### Python库的选择和支持 为了支持论的具体计算需求,可以利用`TA-Lib`这样的第三方金融技术指标库来进行开发工作。此库不仅包含了丰富的内置函数用于执行各种经典和技术性的运算操作,还能够方便快捷地集成到个人项目当中去。 #### 示例代码展示 下面给出了一段简单的Python脚本片段,演示了怎样借助`pandas`和`TA-Lib`两个流行的数据科学包完成基本的论算法框架构建: ```python import pandas as pd import talib.abstract as ta def calculate_chan_theory(dataframe): """ 计算论相关指标 参数: dataframe (pd.DataFrame): 包含OHLCV等列的历史行情数据表 返回: pd.Series: 新增一列表示论结果序列 """ # 假设这里实现了具体的论逻辑... return dataframe['close'] # 这里仅作示意返回收盘价系列 if __name__ == "__main__": df = pd.read_csv('stock_data.csv') # 加载本地CSV文件形式存储的日线级别K线记录 result_series = calculate_chan_theory(df) print(result_series.head()) ``` 请注意上述例子中的`calculate_chan_theory()`函数体内部并未真正实现任何有关论的核心业务流程;这一步骤留给读者根据实际情况自行补充完善。此外,考虑到论本身的复杂度较高,建议初学者先从学习官方文档以及参考现有开源资源入手,逐步积累经验后再尝试独立编写完整的解决方案。 #### 结合其他工具的应用场景拓展 除了单纯依赖编程手段外,还可以考虑将论与其他类型的表模式或者统计模型相结合起来共同作用于投资决策过程之中。比如配合波浪理论一起研究长期趋势变化规律,或是运用机器学习算法挖掘潜在的价格波动特征等等[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人大博士的交易之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值