【EI/IEEE/Scopus检索】2025年,多场高规格国际学术会议即将开启,涵盖智能电网、算法、边缘计算等前沿领域。
【EI/IEEE/Scopus检索】2025年,多场高规格国际学术会议即将开启,涵盖智能电网、算法、边缘计算等前沿领域。
文章目录
欢迎铁子们点赞、关注、收藏!
祝大家逢考必过!逢投必中!上岸上岸上岸!upupup
大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可关注V “
学术会议小灵通
”或参考学术信息专栏:https://ais.cn/u/EbMjMn
投稿通道已开启,展示你的研究成果,与全球学者共话未来!长沙的火辣、上海的繁华、广州的活力、武汉的魅力,在学术交流中感受城市魅力!抓住机会,投递你的学术成果,让世界听见你的声音!学术盛宴等你来参与!
📝 第二届智能电网与人工智能国际学术会议(SGAI 2025)
- 2025 2nd International Conference on Smart Grid and Artificial Intelligence
- 📅 时间:2025年3月21-23日
- 📍 地点:中国长沙
- 📝 亮点:投稿后5天内快速反馈,智能电网与人工智能领域的前沿探讨。
- 🔍 检索:EI Compendex、IEEE Xplore、Scopus收录。
- 👨🎓 适合人群:智能电网、人工智能及相关领域的硕博生及研究人员。
- 代码实现(负荷预测中的MAE计算):
def mean_absolute_error(y_true, y_pred):
return np.mean(np.abs(y_true - y_pred))
# 假设实际负荷值与预测负荷值
y_true = np.array([100, 150, 200, 250])
y_pred = np.array([110, 145, 195, 245])
# 计算MAE
mae = mean_absolute_error(y_true, y_pred)
print("Mean Absolute Error (MAE):", mae)
📝进化算法和智能控制国际学术研讨会(ISEAIC 2025)
- 2025 International Symposium on Evolutionary Algorithm and Intelligent Control
- 📅 时间:2025年3月21-23日
- 📍 地点:中国上海
- 📝 亮点:投稿后1周左右快速反馈,聚焦进化算法与智能控制的最新研究。
- 🔍 检索:IEEE Xplore、EI、Scopus收录。
- 👨🎓 适合人群:进化算法、智能控制及相关领域的研究生和学者。
- 代码实现(遗传算法的适应度计算):
def fitness_function(x, target):
return np.sum((x - target) ** 2)
# 假设一个解向量和目标值
x = np.array([1, 2, 3])
target = np.array([0, 0, 0])
# 计算适应度
fitness = fitness_function(x, target)
print("Fitness:", fitness)
📝第二届算法、软件工程与网络安全国际学术会议
- 2025 2nd International Conference on Algorithms, Software Engineering and Network Security
- 📅 时间:2025年3月21-23日
- 📍 地点:中国广州
- 📝 亮点:往届见刊后一个月完成检索,IEEE出版,EI、Scopus检索快速稳定。
- 🔍 检索:IEEE Xplore、EI、Scopus收录。
- 👨🎓 适合人群:算法、软件工程、网络安全及相关领域的研究生和学者。
- 代码实现(Dijkstra算法实现):
import heapq
def dijkstra(graph, start):
queue = [(0, start)]
dist = {start: 0}
while queue:
(cost, node) = heapq.heappop(queue)
for neighbor, weight in graph[node]:
old_cost = dist.get(neighbor, float('inf'))
new_cost = cost + weight
if new_cost < old_cost:
dist[neighbor] = new_cost
heapq.heappush(queue, (new_cost, neighbor))
return dist
# 假设图的邻接列表
graph = {
'A': [('B', 1), ('C', 4)],
'B': [('A', 1), ('C', 2), ('D', 5)],
'C': [('A', 4), ('B', 2), ('D', 1)],
'D': [('B', 5), ('C', 1)]
}
# 计算从'A'到其他节点的最短路径
distances = dijkstra(graph, 'A')
print("Shortest paths:", distances)
📝第十二届先进制造技术与材料工程国际学术会议(AMTME 2025)
- 2025 12th International Conference on Advanced Manufacturing Technology and Materials Engineering
- 📅 时间:2025年3月21-23日
- 📍 地点:中国广州
- 📝 亮点:投稿后5-7天快速反馈,先进制造技术与材料工程领域的最新成果展示。
- 🔍 检索:EI Compendex、Scopus收录。
- 👨🎓 适合人群:先进制造技术、材料工程及相关领域的硕博生和科研人员。
- 代码实现(应力计算):
def calculate_stress(force, area):
return force / area
# 假设力和面积
force = 100 # 力单位N
area = 10 # 面积单位m^2
# 计算应力
stress = calculate_stress(force, area)
print("Stress:", stress)
📝第二届边缘计算与并行、分布式计算国际学术会议(ECPDC 2025)
- 2025 2nd International Conference on Edge Computing, Parallel and Distributed Computing
- 📅 时间:2025年4月11-13日
- 📍 地点:中国武汉
- 📝 亮点:投稿后7天内快速反馈,边缘计算与并行、分布式计算领域的前沿研究。
- 🔍 检索:EI Compendex、Scopus收录。
- 👨🎓 适合人群:边缘计算、并行计算、分布式计算及相关领域的研究生和学者。
- 代码实现(模拟MapReduce操作):
from functools import reduce
# 定义Map函数
def map_function(x):
return x * x
# 定义Reduce函数
def reduce_function(x, y):
return x + y
# 输入数据
data = [1, 2, 3, 4, 5]
# Map操作
mapped_data = list(map(map_function, data))
# Reduce操作
result = reduce(reduce_function, mapped_data)
print("MapReduce result:", result)