【深度学习|学习笔记】 Feed-Forward Neural Network(前馈神经网络,FFNN)详解,附代码

【深度学习|学习笔记】 Feed-Forward Neural Network(前馈神经网络,FFNN)详解,附代码

【深度学习|学习笔记】 Feed-Forward Neural Network(前馈神经网络,FFNN)详解,附代码



欢迎铁子们点赞、关注、收藏!
祝大家逢考必过!逢投必中!上岸上岸上岸!upupup

大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可关注VX “学术会议小灵通”或参考学术信息专栏:https://blog.csdn.net/2401_89898861/article/details/146957339


一、起源

前馈神经网络(Feed-Forward Neural Network, FFNN) 是最基础的神经网络结构。它源自 1943 年 McCulloch 和 Pitts 提出的人工神经元模型,后来由 Frank Rosenblatt 在 1958 年发展为感知机模型(Perceptron)。

发展脉络:

  • 1943:神经元模型(McCulloch & Pitts)
  • 1958:单层感知机(Perceptron)
  • 1986:误差反向传播算法(Backpropagation)解决多层网络训练
  • 2010s-至今:深层前馈网络广泛用于分类、回归、表示学习等

二、原理

1. 结构组成

前馈神经网络由多个层级结构组成,层与层之间是全连接(Fully Connected):

  • 输入层(Input Layer)
  • 隐藏层(Hidden Layer)
  • 输出层(Output Layer)

每一层的神经元都与上一层的所有神经元相连,数据在网络中单向前传,无反馈。

2. 激活函数(非线性)

常用激活函数:

  • ReLU(最常用)
  • Sigmoid(适用于概率输出)
  • Tanh(早期常用)

3. 前向传播过程(Forward Pass):

对于第 l l l 层的输出:

在这里插入图片描述
其中:

  • W ( l ) W^{(l)} W(l):权重矩阵
  • b ( l ) b^{(l)} b(l):偏置向量
  • f f f:激活函数

4. 反向传播(Backward Pass):

  • 通过链式法则计算梯度,并利用梯度下降算法更新参数

三、发展

在这里插入图片描述

四、改进方向

在这里插入图片描述

五、应用领域

在这里插入图片描述

六、PyTorch 实现示例

以下为一个简单的前馈神经网络,用于对 MNIST 手写数字进行分类

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader

# 定义前馈神经网络(FFNN)
class FeedForwardNN(nn.Module):
    def __init__(self, input_size=784, hidden_sizes=[256, 128], num_classes=10):
        super(FeedForwardNN, self).__init__()
        self.fc1 = nn.Linear(input_size, hidden_sizes[0])
        self.relu1 = nn.ReLU()
        self.fc2 = nn.Linear(hidden_sizes[0], hidden_sizes[1])
        self.relu2 = nn.ReLU()
        self.fc3 = nn.Linear(hidden_sizes[1], num_classes)
    
    def forward(self, x):
        x = x.view(x.size(0), -1)  # 展平
        x = self.relu1(self.fc1(x))
        x = self.relu2(self.fc2(x))
        x = self.fc3(x)
        return x

# 训练参数
batch_size = 64
epochs = 5
lr = 0.001

# 加载数据
transform = transforms.Compose([transforms.ToTensor()])
train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)

# 实例化模型
model = FeedForwardNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=lr)

# 训练过程
for epoch in range(epochs):
    for i, (images, labels) in enumerate(train_loader):
        outputs = model(images)
        loss = criterion(outputs, labels)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        if (i+1) % 100 == 0:
            print(f"Epoch [{epoch+1}/{epochs}], Step [{i+1}/{len(train_loader)}], Loss: {loss.item():.4f}")

七、总结

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力毕业的小土博^_^

您的鼓励是我创作的动力!谢谢!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值