【论文推荐|滑坡检测·空间预测·时间预测· 数据驱动的分析】机器学习在滑坡研究中的最新进展与应用(2022)(八)
【论文推荐|滑坡检测·空间预测·时间预测· 数据驱动的分析】机器学习在滑坡研究中的最新进展与应用(2022)(八)
欢迎铁子们点赞、关注、收藏!
祝大家逢考必过!逢投必中!上岸上岸上岸!upupup
大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可关注VX “
学术会议小灵通
”或参考学术信息专栏:https://blog.csdn.net/2401_89898861/article/details/145551342
论文地址:https://doi.org/10.1007/s11069-022-05423-7
5 滑坡时序预测
滑坡时序预测旨在评估影响边坡稳定性的关键因子随时间的演化,可在区域/全球尺度或坡面尺度上进行。尺度选择通常取决于监测参数,而监测参数又与滑坡类型密切相关。
- 在区域尺度上,预测通常依赖降雨监测、地貌分析和水文气象模型;
- 在坡面尺度上,则采用地质工程方法,将位移等监测数据与失稳时间关联(Intrieri et al., 2019)。
不同类型滑坡的监测参数各异。例如,浅层滑坡通常由极端降水或复合水文气象事件触发,因此气象数据是关键监测参数。而对于缓慢移动的深层滑坡,位移监测数据对坡体稳定性评估至关重要。近年来,大数据集成方法和物联网(IoT)技术促进了滑坡监测数据的收集,并结合机器学习(ML)方法提升了滑坡时序预测能力。本节综述并探讨截至2020年利用ML进行滑坡时序预测的主要研究进展。
5.1 坡面尺度滑坡位移预测
- 滑坡位移预测是现代滑坡预警系统的重要组成部分,可用于设定预警阈值,并识别滑坡加速阶段,以预警可能的失稳事件。
- 实时监测系统(如地震检波器、干涉合成孔径雷达InSAR、全球导航卫星系统GNSS)采集的时间序列数据,以及降水、水位等触发因子,为ML建模提供了关键输入。
然而,滑坡位移随时间变化的预测具有挑战性,其受复杂的坡体变形机制影响。
传统ML方法(如支持向量机SVM、人工神经网络ANN)在滑坡位移预测中的应用可追溯至Mayoraz et al. (1996)、Mayoraz & Vulliet (2002)、Ran et al. (2010)、Zhu & Hu (2012)和Du et al. (2013)。其中,Mayoraz等人利用ANN结合气象和物理数据,采用多层感知机神经网络(MLP-NN)预测滑坡速度,而非直接预测位移,其输入变量包括日降水、蒸发量和孔隙水压力,结果表明在短期(几天内)可获得较优预测精度。然而,该研究也发现MLP模型在测试集上的预测精度低于训练集,表明存在过拟合问题。
近年来,深度学习(DL)及混合ML算法在滑坡变形预测中展现出更优的性能,尤其是在中国三峡库区(TGRA)等滑坡高发地区的应用(详见表9)。针对时间序列预测问题,先进神经网络因其能有效建模时序数据的依赖关系,被认为是最具潜力的解决方案(van Natijne et al., 2020)。
滑坡位移预测的一般流程包括:
- (i) 累计位移分解;
- (ii) 影响因子筛选;
- (iii) 预测模型构建;
- (iv) 预测结果评估。
Wang (2003)和Du et al. (2013)提出,滑坡累计位移(D)时间序列可分解为三部分:趋势项(T)、周期项(P)和随机项(S)。其中:
- 趋势项(T):由岩性、地质构造、风化作用等“内在”地质条件控制,反映长期位移趋势。
- 周期项(P):受降水、库水位周期性波动等“外部”因素影响,表现为短周期位移变化。
- 随机项(S):由突发性环境变化引起,如三峡库区水位突升或骤降改变滑坡的水力边界条件。
在TGRA等地区的滑坡预测研究中,周期项和随机项往往未被区分,或完全忽略随机项,而周期项主要归因于库水位波动和降水变化。ML算法被广泛用于预测位移时间序列中的周期项,以量化滑坡位移与降水、库水位等影响因子的关系,提高预测精度。
最新的研究总结见表9。
- 机器学习(ML)算法在去除趋势项后的滑坡位移周期性分量预测中表现出色。
- 多种ML算法已用于周期性滑坡位移的预测。
然而,大多数研究仅使用单一滑坡案例验证其算法的适用性和优越性,因此该算法在其他滑坡上的表现可能不佳。例如,Ma et al. (2020)、Xie et al. (2019)和Krkač et al. (2017)等研究仅使用了单一ML算法进行滑坡位移预测。TGRA地区的常用控制因子包括事件发生前1至3个月的前期降水量和水库水位(如Du et al., 2013;Yang et al., 2019;Zhou et al., 2018a)。
- 并非所有可能与滑坡变形相关的控制因子都能作为ML模型的输入变量,因为与滑坡变形相关性较低的因素会增加模型复杂性并降低预测准确性。
通常通过相关性分析(如灰色关联分析Deng, 1989;最大信息系数Reshef et al., 2011)选择与周期性位移强相关的控制因子。
三峡库区的白水河滑坡提供了比较的可能性,因为多种方法已在该滑坡上进行了测试。白水河滑坡为倒退型滑坡,变形最初发生在坡脚,随后向上倒退(Du et al., 2013)。**该滑坡自2003年以来多次发生强烈变形。**表10显示,深度学习(如DBN、LSTM)或混合ML方法表现出色。然而,三峡库区水库水位对滑坡稳定性的影响不可忽视,这一特点在其他地区较为罕见,因此结论难以直接转移到其他滑坡中。
下节请参考:【论文推荐|滑坡检测·空间预测·时间预测· 数据驱动的分析】机器学习在滑坡研究中的最新进展与应用(2022)(九)