【论文推荐】人工智能在滑坡风险评估三大核心领域的应用:人工智能技术在滑坡风险评估中的方法学实践(四)
【论文推荐】人工智能在滑坡风险评估三大核心领域的应用:人工智能技术在滑坡风险评估中的方法学实践(四)
文章目录
欢迎铁子们点赞、关注、收藏!
祝大家逢考必过!逢投必中!上岸上岸上岸!upupup
大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可关注VX “
学术会议小灵通
”或参考学术信息专栏:https://blog.csdn.net/2401_89898861/article/details/146638463
2024·Rock Mechanics Bulletin·https://doi.org/10.1016/j.rockmb.2024.100144
3. 人工智能技术在滑坡风险评估中的方法学实践
3.2 滑坡易发性评估
3.2.1 机器学习在滑坡易发性评估中的应用
- 2012年,Akgun等基于专家知识体系构建Mamdani模糊算法(Mamdani Fuzzy Algorithm),成功实现锡诺普市滑坡易发性区划,其AUC值达0.855,表明模型具有优良的拟合优度(Akgun et al., 2012)。
- 同年,Althuwaynee等(2012)验证证据置信函数(Evidential Belief Functions)在LSM中的有效性;
- Tien Bui等(2012a)通过自适应神经模糊推理系统(Adaptive Neuro-Fuzzy Inference System, ANFIS)开展LSM研究,证实其精度可满足工程需求。
- 2013年,Kayastha等(2013)将层次分析法(Analytical Hierarchy Process, AHP)引入LSM,其分析结果与历史滑坡分布具有良好一致性,该结论后续获多项研究验证(Chang et al., 2023; Dou et al., 2019; Nath et al., 2024; Zhou et al., 2023)。
上述研究表明,证据置信函数、模糊模型及层次分析法在LSM应用中均表现出显著优势。
为确定LSM最优模型,多数研究聚焦于不同模型的性能对比。
- 2012年,Tien Bui等(2012b)对比证据置信函数与模糊逻辑模型(Fuzzy Logic
Models),发现二者虽均能有效完成LSM,但证据置信函数具有更高精度。 - Pourghasemi等(2012a,b)研究表明,模糊逻辑模型在LSM中性能优于层次分析法。综合而言,上述三类模型中证据置信函数的预测能力最优。
- 此外,学者还探索了熵指数(Index of Entropy)、条件概率模型(Conditional Probability Models)、频率比(Frequency Ratio)、证据权重(Weights of Evidence)、确定性因子(Certainty Factor)等统计模型的应用(Devkota et al., 2013; Ozdemir, 2013; Pourghasemi et al., 2012a,b; Regmi et al., 2014),结果显示各模型在LSM中均表现良好且精度相近。
部分研究通过机器学习模型与统计模型的对比实验,证实机器学习方法具有更优性能(Akgun, 2012; Ali et al., 2021; Felicísimo et al., 2013; Goetz et al., 2015; Huang et al., 2020; Pradhan, 2013)。因此,机器学习模型已成为LSM研究的主流方向,诸多学者通过不同ML模型间的对比遴选最优框架。如图14所示,阿尔及利亚地区采用不同ML模型生成的滑坡易发性区划图显示:支持向量机(Support Vector Machine, SVM)、逻辑回归(Logistic Regression, LR)、朴素贝叶斯(Naive Bayes, NB)、随机森林(Random Forest, RF)等模型性能存在差异。研究表明,尽管上述ML模型均能有效实现LSM,但SVM、LR及RF在输出精度与稳定性方面更具优势(Chen et al., 2017; Guo et al., 2021; Pradhan, 2013; Tsangaratos and Ilia, 2016; Youssef et al., 2016; Youssef and Pourghasemi, 2021)。
3.2.2 深度学习在滑坡易发性评估中的应用
深度学习(Deep Learning, DL)在滑坡易发性区划制图(LSM)中的应用日益广泛。
- 2014年,Conforti等(2014)采用人工神经网络(Artificial Neural Network, ANN)对意大利南部Turbolo河流域进行LSM研究,结果表明模型输出结果具有较高可靠性,初步验证了神经网络模型在LSM中的有效性。
- Dou等(2020)在越南Muong Lay地区的案例研究中应用DL模型,其LSM结果在测试集上表现出良好拟合性能。
部分研究聚焦于DL与ML模型的性能对比。
- 2020年,Bui等(2020)对比DL模型与支持向量机(SVM)、决策树(DT)、随机森林(RF)等传统ML模型的LSM精度,结果表明DL模型的精度较ML模型提升3%~7%。
- 2021年,Mandal等(2021)通过卷积神经网络(CNN)与随机森林、装袋法(Bagging)等ML模型的对比实验,证实CNN具有更高的预测精度。
综上,DL模型相较于传统ML模型表现出更优性能(即具有更高LSM精度)(Jiang et al., 2023)。
- 此外,不同DL模型间的对比研究亦逐渐展开(Ge et al., 2023; Kim and Lee, 2024)。
- 当前LSM领域主要采用的两类DL框架为卷积神经网络(CNN)与循环神经网络(RNN)(Fan and Hua, 2009; Wang et al., 2020a,b; Yi et al., 2020; Mandal et al., 2021; Jiang et al., 2023)。
3.2.3 混合模型在滑坡易发性评估中的应用
除单一模型外,诸多研究通过混合模型(Hybrid Model, HM)优化滑坡易发性区划制图(LSM)。
- 多项研究验证了HM的优越性(Pourghasemi et al., 2012; Chen et al., 2017; Goetz et al., 2015; Trinh et al., 2023; Youssef et al., 2016; Liu et al., 2024a; Yang et al., 2024a)。
- 2014年,Althuwaynee等(2014)将证据置信函数与层次分析法融合构建新型模型,其LSM性能显著优于单一逻辑回归(Logistic Regression, LR)模型。
- 2020年,Wang等(2020a)对比HM(集成支持向量机、人工神经网络及梯度提升决策树的混合框架)与单一ML模型,结果显示HM的AUC值较ML模型提升0.11–0.35。
- Wang等(2020b)基于日本某山区流域数据,采用装袋法(Bagging)、提升法(Boosting)及堆叠法(Stacking)集成SVM模型,显著提升了滑坡评估精度,证实HM的优越性。
- Di Napoli等(2020)指出,多模型融合可生成鲁棒性更强、稳定性更高的LSM结果。
- 此外,不同HM间的对比研究表明,其精度仍存在显著差异(Balogun et al., 2021; Chen et al., 2019, 2016; Nguyen et al., 2019; Tien Bui et al., 2019)。
下节请参考:【论文推荐】人工智能在滑坡风险评估三大核心领域的应用:人工智能技术在滑坡风险评估中的方法学实践(五)