走进理光了解理光品牌故事

理光创立于1936年,全球总部设立在日本东京,在全球约200个国家和地区的140万家大小企业提供数字化服务、打印和成像解决方案,赋能客户数字化转型。理光公司自创立以来一直坚信创造力的价值,并以此信念来激励事业的发展。

公司的创始人市村清先生创建了人才济济的智囊团,他们带着职业的自豪感,向传统束缚发起挑战。他们为我们描绘了这样一幅蓝图:只需轻轻按下按钮,就可以准确复印和分发信息,从而随时随地获取重要业务知识和信息。凭借创新技术、工程设计和优良工艺的结合,理光将这一蓝图转变成了现实。它的打印机、复印机和传真机均走在了办公自动化和业务操作变革时代的前沿。

如今的理光已发展成为一家名副其实的跨国数字化服务型公司。它的服务标准异常严格,旨在与客户建立真诚的合作关系。借助理光团队的技术能力和IT知识,客户公司可以降低成本、减少浪费和简化业务流程,并为客户公司自身的顾客创造实际利益。最为重要的是,通过鼓励雇员创造性思企业标杆考,从而快速凝聚团队智慧,理光推动的是一次影响深远且长久的业务变革。

### 解决 PP-OCRv4 出现的错误 当遇到 `WARNING: The pretrained params backbone.blocks2.0.dw_conv.lab.scale not in model` 这样的警告时,这通常意味着预训练模型中的某些参数未能匹配到当前配置下的模型结构中[^2]。 对于此问题的一个有效解决方案是采用特定配置文件来适配预训练权重。具体操作方法如下: 通过指定配置文件 `ch_PP-OCRv4_det_student.yml` 并利用已有的最佳精度预训练模型 (`best_accuracy`) 来启动训练过程可以绕过上述不兼容的问题。执行命令如下所示: ```bash python3 tools/train.py -c configs/det/ch_PP-OCRv4/ch_PP-OCRv4_det_student.yml ``` 该方案不仅解决了参数缺失带来的警告,还能够继续基于高质量的预训练成果进行微调,从而提升最终检测效果。 关于蒸馏的概念,在机器学习领域内指的是将大型复杂网络(teacher 模型)的知识迁移到小型简单网络(student 模型)。这里 student 和 teacher 的关系是指两个不同规模或架构的神经网络之间的指导与被指导的关系;其中 teacher 已经经过充分训练并具有良好的性能,而 student 则试图模仿前者的行为模式以达到相似的效果但保持更高效的计算特性。 至于提到的 `Traceback` 错误信息部分,由于未提供具体的跟踪堆栈详情,难以给出针对性建议。不过一般而言,这报错往往涉及代码逻辑错误或是环境配置不当等问题。为了更好地帮助定位和解决问题,推荐记录完整的异常日志,并仔细检查最近修改过的代码片段以及确认依赖库版本的一致性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

华研前沿标杆游学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值