- 博客(73)
- 收藏
- 关注
原创 基于书生大模型的AI搜索引擎FreeKnowledge AI | 与书生共创
随着书生大模型开源生态的不断壮大,越来越多的产品和平台纷纷接入书生大模型。科研人员依托书生大模型持续探索创新,取得了丰富的研究成果;社区用户也不断创造出令人耳目一新的项目。“与书生共创”将推出一系列文章,聚焦这些合作与创新案例。欢迎订阅并踊跃投稿,一起分享经验与成果,共同推动大模型技术的应用与发展。本文来自社区投稿,作者邬雨航,书生大模型实战营学员,将向大家介绍孵化于书生大模型实战营的项目 FreeKnowledge AI,一款完全免费的 AI 知识搜索引擎。
2026-01-27 11:18:16
580
原创 从2天变2小时!书生大模型赋能教育行业,智能阅卷&学情分析一步到位丨与书生共创
同时,传统批阅方式仅停留在分数统计层面,缺乏对错因、知识薄弱环节的细致诊断,难以实现深度的学情分析。这既加重了教师的工作负担,也使得教研活动缺乏数据支撑,制约了教学优化与个性化发展的可能性。其核心是通过 AI 实现自动批阅,教师只需复核不足 5% 的异常情况,帮助教师高效、精准地完成试卷批阅工作,同时提供全面的学情分析和教学建议。依托书生·万象 InternVL 多模态大模型,深圳市牛娃教育科技的智能阅卷与教学分析一体化平台,让教师批阅更高效、学情分析更精准。实时显示阅卷进度,支持多人协作。
2026-01-14 13:38:05
722
原创 ACL 2025杰出论文!用能力显著向量让大模型下游任务性能预测更精准
本文提到Capability Salience Vector(能力显著向量,CSV),这是一种将整体损失分解并为不同tokens分配重要性权重的方法,能实现将验证损失与模型下游任务能力对齐的功能。传统缩放定律虽建立了训练计算与验证损失的关系,但验证损失与下游任务能力间存在差距,因其默认tokens重要性相同,无法直接建模下游能力与计算或token损失的关系。
2026-01-14 10:18:34
507
原创 基于InternVL的遥感大模型智能分析平台丨与书生共创
本项目主要通过数据集创新、算法优化与场景适配,显著提升了模型遥感图像解析的效率与精度,其核心技术可进一步拓展至跨模态特征对齐、自主决策智能体、“端—边—云”协同等方向,为遥感智能分析领域的发展提供重要参考。
2026-01-13 13:49:13
614
原创 基于书生大模型的临床级眼科智能诊疗系统丨与书生共创
灵瞳”眼科智慧诊疗系统是依托自主研发的 OphVLM-R1 多模态推理大模型构建的专业化医疗 AI 平台,专为眼科影像分析与诊断任务量身打造。该项目的核心目标是破解全球眼科优质医疗资源分布不均、基层医疗机构误诊漏诊率居高不下的行业困境,通过 AI 技术赋能临床医生,尤其是基层医疗工作者,提升眼科疾病的早期筛查与精准诊断能力。
2026-01-13 13:46:19
675
原创 空间智能再进化!Spatial-SSRL重磅来袭,引入全新自监督RL范式,帮助LVLM更好读懂空间
为充分验证Spatial-SSRL范式的效果,研究团队选取了Qwen2.5-VL (3B&7B)和Qwen3-VL(4B)两个架构的三个不同参数量的基模型,利用GRPO进行训练,并对训练后的模型进行了空间理解、通用视觉能力等全方位评测,与相应的基模型实施了对比分析。,现有利用RLVR提升空间理解的方法常聚焦于搭建复杂的流程构建训练数据,其中往往依赖已标注好的公开数据集,以及较多外部工具,如专家模型、模拟器等,框架较为繁琐,且使用的外部工具也会引入不小的计算开销和时间成本。
2026-01-12 11:14:13
785
原创 10万奖金池,书生大模型实战营(第六期)等你来!
上海人工智能实验室将以实战营为平台联合更多合作伙伴,提供开发技术支持,助力开发者打造“出圈”项目,共同推动国产 AI 生态繁荣。书生大模型实战营第 6 期全面升级,本次课程将在 A100、曦云C系列及 Ascend 多个算力平台,以科学多模态大模型 Intern-S1 为载体,带领大家掌握大模型部署、微调、评测全链路技能。同时,特别增设近 10 万元奖金池的「书生大模型 SFT/RL 公式识别打榜赛」,以赛促学,实战赋能,助力开发者全面掌握大模型核心能力!
2026-01-09 16:00:00
203
原创 数学奥赛高分摘金,位列大模型榜首,『书生』科学多模态大模型Intern-S1能力再升级
称上述过程为一次操作。阅卷专家评价Intern-S1:“答案表达方式非常接近人类”,其中对第四题的解答是“一个新的解法,巧妙的调整法,在学生的解法中没有见过”——这标志着Intern-S1不仅在表达逻辑的严谨性和推理能力方面达到专业级水准,还能突破人类解题思路局限,通过自主探索和分析找到新的解题方法,为进一步赋能科学发现夯实技术基础。在学生的解法中没有见过”——这一例证,展示出Intern-S1具备了理解复杂概念、进行创造性推理和发现精妙解法的能力,并在表达逻辑的严谨性能方面,通过了阅卷专家的严苛考核。
2026-01-09 11:26:14
995
原创 知云文献翻译携手书生大模型,打造高效智能学术阅读新体验 | 与书生共创
随着书生大模型开源生态的不断壮大,越来越多的产品和平台纷纷接入书生大模型。科研人员依托书生大模型持续探索创新,取得了丰富的研究成果;社区用户也不断创造出令人耳目一新的项目。“与书生共创”将推出一系列文章,聚焦这些合作与创新案例。欢迎订阅并踊跃投稿,一起分享经验与成果,共同推动大模型技术的应用与发展。今天要分享的案例,来自知云文献翻译团队。2025 年 4 月,知云团队正式接入书生·浦语(InternLM)大模型,并将其作为可自定义的 API 引擎深度集成至软件中。
2026-01-08 19:27:54
633
原创 书生大模型体系的一年探索与突破
ArtiMuse利用超过30万张图像作为训练集,其中包含1万张自建的精标注图像,具有80亿参数,能够对多种类的图像进行精细化、多维度的分项评估,还能生成具有专业水准的美学点评,为艺术教育、审美评价、美育普及提供了精确的量化工具。多模态基础能力全面提升,在专家级基准测试、多模态性能全面测试中,10亿~780亿参数的全量级版本在开源模型中性能均位列第一,同时大幅提升了图形用户界面(GUI)智能体、建筑场景图纸理解、空间感知推理以及通识学科推理等方面的能力。减身材不减实力,助力科研、开发、教育多种场景。
2025-12-31 19:24:53
822
原创 CapRL:用强化学习突破Image Captioning训练瓶颈,3B模型性能媲美72B
近日,上海人工智能实验室联合团队发布了 Dense Image Captioning 领域的最新成果——这是首个将 DeepSeek-R1 强化学习策略成功应用于 Image Captioning 这类开放视觉任务的工作,创新地以实用性重新定义了 Image Captioning 的 reward。训练得到的,在图像描述任务上能,是 Image Captioning 领域的重要突破,也为提供了新的思路。
2025-10-30 10:08:47
890
原创 跨芯片统一优化,DLCompiler 与 DLBlas 驱动算子极致表现
9 月 10 日,上海人工智能实验室(上海 AI 实验室)DeepLink 团队开源扩展 Triton 的深度学习编译器,以及面向大模型训练与推理、异构硬件适配的高性能算子库。开发者无需手动调优,即可获得接近硬件峰值的性能。面向昇腾 DSA 架构,研究团队通过深度融合,在性能保持无损的同时,突破了跨代迁移难题。同时,研究团队与昇腾毕昇编译器团队、昇腾基础软件团队和昇腾特战队协同优化,基于 AscendNPU IR 首次让 Triton OP 在昇腾芯片上实现极致性能优化,特定 Shape下 Cube,并在。
2025-09-11 16:13:36
1257
原创 LMDeploy全面升级,FP8、MXFP4一网打尽,推理性能再创新高!
9 月 9 日,上海人工智能实验室(上海AI实验室)大模型推理部署工具 LMDeploy 迎来重磅更新——v0.10.0版本正式发布,进一步为社区提供更高效、更稳定、可扩展的推理部署方案。今年以来,LMDeploy 已持续迭代多个版本,实现了等一系列关键突破。:LMDeploy 新增对多机部署的全面支持,显著提升超大规模模型的推理效率。该能力已成功应用于 DeepSeek 大模型的分布式推理场景,并与 DeepLink、Mooncake等团队深度合作,实现了 PD 分离部署。
2025-09-10 10:46:52
935
原创 专为“超大模型而生”,新一代训练引擎 XTuner V1 开源!
9 月 8 日,上海人工智能实验室(上海AI实验室)开源书生大模型 新一代训练引擎。XTuner V1是伴随上海 AI 实验室“通专融合”技术路线的持续演进,以及书生大模型研发实践而成长起来的新一代训练引擎。相较于传统的 3D 并行训练引擎,XTuner V1不仅能应对更加复杂的训练场景,还具备更快的训练速度,尤其在超大规模稀疏混合专家(MoE)模型训练中优势显著。除了训练框架,书生大模型研发中使用的 AIOps 工具与也将一并开源,为大规模分布式训练提供全方位保障。
2025-09-09 13:34:40
904
原创 轻量级易开发,8B参数释放大实力!科学多模态模型Intern-S1-mini开源
继 7 月 26 日开源之后,上海人工智能实验室(上海AI实验室)今天推出了轻量化版本凭借领先的通用与专业科学能力,Intern-S1 上线后连续多日,并在开源社区引发了广泛关注。作为 8B 参数的“迷你模型”,Intern-S1-mini 同样兼具通用能力与专业科学能力,且更加适合快速部署和二次开发。Intern-S1-mini 性能速览:通用能力稳居同量级第一梯队:在 MMLU-Pro、AIME2025、MMMU 等多项权威基准上表现卓越,展现出兼具稳定性与竞争力的综合实力;
2025-08-21 18:27:24
636
原创 强强联合!科研智能体SciMaster接入Intern-S1
近期,科研智能体 SciMaster 接 入Intern-S1,科研工作者和爱好者不仅可以在书生大模型官网直接体验 Intern-S1 的强大功能,还能在SciMaste官网 调用其强大的科研能力,实现跨平台、无缝衔接的科研助力。无论你是科研老手,还是初入学术世界的新手,Intern-S1 与 SciMaste 的组合都能成为你的高效科研搭档,助你从灵感到成果,走得更快、更稳。SciMaste 会自动调用 Intern-S1,将你的问题作为查询输入,并返回精准的结果。在对话框中输入你的问题,并在后面加上。
2025-08-15 10:52:25
483
原创 从数千年变数小时,书生大模型赋能催化剂“闪电发现”
书生大模型体系包括科学多模态大模型书生Intern-S1、大语言模型书生·浦语InternLM、多模态模型书生·万象InternVL等,以及面向大模型研发与应用的全链路开源工具体系,覆盖数据处理、预训练、微调、部署、评测与应用等关键环节,包含低成本微调框架XTuner、部署推理框架LMDeploy、评测框架OpenCompass、高效文档解析工具MinerU,以及思索式AI搜索应用MindSearch等,持续降低大模型应用及研究门槛。因此,开发高效、稳定的新型HER催化剂具有重要意义。通讯作者:陈亚楠;
2025-08-14 16:48:49
516
原创 奖励模型预训练新范式POLAR:突破强化学习短板,有望打通RL链路扩展“最后一环”
先来看一下POLAR能做到什么。与传统的奖励模型不同,POLAR是根据参考答案为模型的输出打分。这意味着POLAR可以灵活地基于不同场景的参考答案给出不同的奖励分数,轻松适配多样的定制化需求。彩虹是怎么形成的?彩虹是阳光经过水滴折射和反射后形成的。当阳光照射到空气中的小水滴时,光线会进入水滴发生折射,再从水滴的内壁反射后再次折射出水滴。由于不同波长的光折射角度不同,最终呈现出不同的颜色,这些颜色组合起来就形成了我们所看到的彩虹。彩虹是阳光通过空气中的水滴折射和反射后形成的。
2025-07-15 11:10:50
860
原创 论文分类打榜赛Baseline(2):InternLM昇腾硬件微调实践
本文来自社区投稿,作者丁一超书生大模型实战营第5期已正式启动,本期实战营新增「论文分类打榜赛」,以帮助学员更好地掌握大模型技能。本文将手把手带领大家,轻松上手论文自动分类任务。从环境配置、数据准备,到 模型微调和推理部署,完整教程不藏私。即使你是模型微调新手,也能快速参与打榜实践!
2025-06-10 11:07:36
774
原创 基于InternLM的情感调节大师FunGPT
在这个快节奏的世界里,我们需要一点调味剂来调和生活。无论是需要一点甜言蜜语来提振精神,还是需要一剂犀利怼语来释放压力,FunGPT都能满足您的需求。FunGPT基于 InternLM2.5 系列大模型,利用 XTuner 进行QLoRA指令微调,使模型能够满足用户的个性化要求。同时为了方便用户,我们还发布了 1.8B 系列小模型,减量不减效果;此外,我们还利用 LMDeploy 对多个模型使用感知权重量化(AWQ)算法进行W4A16量化,既节省显存又提升推理速度!心情提升器🌟✨。
2025-06-03 15:30:44
1311
原创 论文分类打榜赛Baseline:ms-swift微调InternLM实践
本文来自社区投稿,作者尖米、张富才。书生大模型实战营第5期已正式启动,本期实战营新增「论文分类打榜赛」,以帮助学员更好地掌握大模型技能。本文将手把手带领大家,轻松上手论文自动分类任务。从环境配置、数据准备,到 LoRA 微调和推理部署,完整教程不藏私。即使你是模型微调新手,也能快速参与打榜实践!
2025-06-03 15:15:28
1559
原创 大模型首次打破围棋思维“黑盒”,打通科学发现新路径,书生·思客InternThinker升级发布|通专融合探索新进展
上海人工智能实验室(上海AI Lab)致力于以“”路径实现通用人工智能(AGI),为推动科学发现等重要任务带来下一代先进基础大模型。近日,基于一系列“通专融合”底层技术新进展,书生·思客(InternThinker)获得专业推理能力大幅提升,成为首个既具备围棋专业水平,又能展示透明思维链的大模型。在实验室科研人员的布局和着子中,蕴含数千年智慧的围棋成为了科学探索的“试应手”。
2025-05-23 15:01:30
1266
原创 使用WasmEdge将InternLM集成到Obsidian,打造本地智能笔记助手
InternLM 介绍由上海人工智能实验室发布的书生·浦语(InternLM)系列大语言模型,作为该系列的最新版本,书生·浦语3.0(InternLM3)通过精炼数据框架,大幅提升了数据效率,并实现思维密度的跃升。仅使用 4T 训练数据的 InternLM3-8B-Instruct,其综合性能超过了同量级开源模型,节约训练成本 75% 以上;同时,书生·浦语3.0 首次在通用模型中实现了常规对话与深度思考能力融合,可应对更多真实使用场景。体验页面:WasmEdge介绍。
2025-04-11 10:42:45
1008
原创 基于多智能体的图像信息定位系统 MultiAgent-Search | 与书生共创
目前图寻地址主要依赖计算机视觉(CV)方法,通过与大量卫星图像比对来确定位置。尽管这些方法效果显,但随着大模型的应运而生,依据人对于图像地理知识及相关特征的推理未免不是一个好的解决方案。因此,我开发了一种基于多智能体的图像识别与位置推理系统。旨在通过视觉、知识与决策等多智能体协同工作,能够有效分析城市地标的多维信息,通过逐步推理的方式得到准确的地理位置。项目展示。
2025-03-21 15:13:07
1148
原创 手把手带你基于Zotero,使用InternLM API打造英文文献翻译助手
本文来自社区投稿,作者艾天龙在日常工作和学习中,你是否常常因为无法很好地理解英文文献而感到困扰?又是否对 Google 翻译生硬的结果感到不满?本教程将介绍如何利用书生・浦语(InternLM)大模型,结合 Zotero 文献管理软件以及 Zotero Translate 翻译插件,实现快速、免费且无需复杂网络环境配置的 AI 翻译功能,助力您轻松读懂英文文献,享受流畅的 AI 翻译体验。
2025-03-21 14:04:49
1428
原创 基于EDG4LLM,使用InternLM3 API 高效生成微调数据丨玩转书生大模型
1月15日,上海人工智能实验室对书生大模型进行重要版本升级,书生·浦语3.0通过精炼数据框架,大幅提升了数据效率,并实现思维密度的跃升。仅使用4T训练数据的InternLM3-8B-Instruct,其综合性能超过了同量级开源模型,节约训练成本75%以上;同时,书生·浦语3.0首次在通用模型中实现了常规对话与深度思考能力融合,可应对更多真实使用场景。EDG4LLM是一款专为利用大语言模型生成微调数据而设计的Python 库,旨在帮助用户高效创建高质量的微调数据集。目前,该工具主要支持文本数据生成问题数据。
2025-03-05 14:42:10
898
原创 新一代书生·浦语大模型(InternLM3)沐曦训推实践
LMDeploy涵盖了LLM任务的全套轻量化、部署和服务解决方案。DeepLink团队开发的dlinfer提供了一套将新兴硬件接入大模型推理框架的解决方案。对上承接大模型推理框架,对下在eager模式下调用各厂商的融合算子,在graph模式下调用厂商的图引擎。dlinfer 根据主流大模型推理框架与主流硬件厂商的融合算子粒度,定义了大模型推理的融合算子接口。目前,dlinfer正在全力支持LMDeploy适配包括沐曦在内的多款新兴芯片品牌。
2025-02-27 14:46:29
1107
原创 强化学习范式OREAL:超越蒸馏,推动轻中量级模型突破推理“三重门”困局
实验结果表明,以Qwen2.5-32B-Base为基座模型,仅通过微调和基于结果反馈的强化学习,在不蒸馏超大模型的情况下,即实现在MATH-500数据集上的SOTA性能。此外,将OREAL应用于DeepSeek-r1-Distill-Qwen-7B后,得到的新模型OREAL-DSR1-Distill-Qwen-7B在MATH-500上取得了94.0的pass@1精度,创下了7B模型的记录。对于32B模型,Oreal-32B在MATH-500上也达到了95.0的分数,实现32B模型的新SOTA。
2025-02-19 10:40:02
1053
原创 新一代书生·浦语大模型(InternLM3)寒武纪训推实践
LMDeploy涵盖了LLM任务的全套轻量化、部署和服务解决方案。DeepLink团队开发的dlinfer提供了一套将新兴硬件接入大模型推理框架的解决方案。对上承接大模型推理框架,对下在eager模式下调用各厂商的融合算子,在graph模式下调用厂商的图引擎。dlinfer根据主流大模型推理框架与主流硬件厂商的融合算子粒度,定义了大模型推理的融合算子接口。目前,dlinfer正在全力支持LMDeploy适配包括寒武纪在内的多款新兴芯片品牌。
2025-01-23 15:24:23
1152
原创 新一代书生·浦语大模型(InternLM3)昇腾训推实践
其中,“generated_text”中的内容就是模型的输出文本。在与InterLM3的适配过程中, MindIE基于框架引擎能力,提供深度定制优化模块,并内置模型,使能模型迁移适配过程快速复用亲和昇腾的推理加速能力,实现InternLM3-8B-Instruct 模型在昇腾生态社区同步发布。是基于昇腾生态的大语言模型套件,旨在为昇腾生态合作伙伴提供端到端的大语言模型训练方案,包含分布式预训练、分布式指令微调、分布式偏好对齐以及对应的开发工具链,如:数据预处理、权重转换、在线推理、基线评估。
2025-01-23 14:41:22
1594
原创 书生·浦语大模型升级,突破思维密度,4T数据训出高性能模型
为此,团队提出大规模数据精炼框架,大幅提高了训练数据的质量。基于通专融合的技术路线,研究团队探索了不同类型数据的融合训练方案,使得书生·浦语3.0 同时具备常规对话和深度思考能力,通过系统提示词(system prompt)的控制,可以让单一模型在两种模式间的一键切换,让通用模型具备深度思考能力。高价值数据的合成:基于通专融合的方式,以通用模型快速迭代合成算法,再精选数据训练专用模型,通过在海量天然数据中进行素材挖掘,改进的树状搜索策略,以及多维度质量验证,合成大量内容丰富,质量可靠的高价值数据。
2025-01-15 19:18:05
1053
原创 第4期书生大模型实战营精选项目一览
在这个快节奏的世界里,我们都需要一点调味剂来调和生活。无论是需要一点甜言蜜语来提振精神,还是需要一剂犀利怼语来释放压力,基于 InternLM2.5 系列大模型开发出的 FunGPT 都能满足您的需求。甜言蜜语模式心情提升器:当您感到低落,我们的甜言蜜语模式能让您的心情瞬间飙升,就像尝了一颗超级甜的蜜糖。自信加油站:同时我们的赞师傅会用最合适且独特的方式夸奖您,让您的自信心爆棚。犀利怼语模式压力释放阀:当您感到压力山大,我们的怼人模式能让您在怼人的同时,找到释放的出口。
2025-01-06 10:48:00
925
原创 从自动化到大模型,王培东用实践搭建AI成长阶梯,登上ACL舞台丨社区星风采
—大模型微调/大模型学习路线,InternVL(冷笑话大师)部署微调实践,【Ollama保姆级教程】本地私有化大模型部署,从安装到微调,本地离线不怕隐私外泄,免费的开源AI助手(附教程),书生·浦语大模型开源开放体系,吹爆!”王培东补充道,“这不仅是对学员们的责任,更是对我作为导师的一种自我要求。的故事,他来自东北大学数据挖掘课题组。从最初对自动化、控制领域的探索,到如今专注于多模态大模型、大语言模型等方向的研究,他的经历不仅展现了个人的努力,也是对从迷茫中找寻方向、从实践中收获成长的生动诠释。
2024-12-31 14:22:35
1284
1
原创 凭实力上榜!书生大模型开源社区荣获“2024年开源创新榜单”年度开源社区奖
此外,在主办方的特别邀请下,上海人工智能实验室青年科学家陈恺详细介绍了书生通用大模型体系,包括大语言模型书生·浦语(InternLM)、多模态大模型书生·万象(InternVL)、强推理模型书生InternThinker,以及面向大模型研发与应用的全链条开源体系(覆盖大模型数据、预训练、微调、部署、评测及应用)。经过层层筛选和专家评审,上海人工智能实验室书生大模型开源社区凭借其卓越的技术创新、社区建设以及开源贡献,从众多社区中脱颖而出,荣获“年度开源社区”奖。
2024-12-30 19:05:28
497
原创 推理实力再进阶!书生InternThinker迎来升级,免费API开放在即
自 InternThinker-alpha 版本发布以来,研发团队采用了强化学习的方法,让模型尝试完成大量复杂的推理难题,并在各种任务的沙盒环境进行交互,通过精细化地筛选高质量数据,使得模型在此过程中习得了更多元动作策略,实现了性能的显著提升,在数学等任务上和 o1-mini-20240912 持平。2024 年 12 月 18 日,InternThinker 从 alpha 版本升级到 beta 版本,在数学、理科,推理谜题等复杂推理任务上取得了优异的结果,并将在近期开放免费 API 供开发者使用。
2024-12-30 18:45:47
505
原创 InternLM2.5-20B-Chat 上线 SiliconCloud 平台
SiliconCloud 是硅基流动推出的一站式大模型云服务平台。通过提供更快、更便宜、更全面的主流开源大模型 API 服务,SiliconCloud 希望能打造“大模型 Token 工厂”,帮助开发者真正实现“ Token 自由”。目前,平台已上架多种大语言模型、向量&重排序模型、包含图片/视频生成的多模态大模型,用户可自由切换适合不同应用场景的模型。相比之前上线的 InternLM2.5-7B-Chat,InternLM2.5-20B-Chat 的综合性能更为强大,能够轻松应对更加复杂的应用场景。
2024-12-30 18:42:30
677
原创 安卓端侧大模型MLC-LLM部署全攻略:以InternLM2.5-1.8B为例
本文来自社区投稿,作者:Tim 算法工程师MLC-LLM 是一个机器学习编译器和高性能大型语言模型部署引擎。该项目的使命是让每个人都能在自己的平台上开发、优化和部署 AI 模型。InternLM 2.5 是上海人工智能实验室发布的新一代大规模语言模型,相比于之前的版本,InternLM 2.5支持百万长文,推理能力开源领先。本文将带大家手把手使用 MLC-LLM 将 InternLM2.5-1.8B-Chat部署到安卓手机上。首先我们来看一下最终的效果~
2024-12-25 19:09:16
3236
5
原创 AI 玩家已上线!和 InternLM 解锁“谁是卧底”新玩法
本文来自社区投稿,作者LangGPT联合发起人、东北大学在读博士生王明在大模型技术日益普及的今天,AI 的应用已经渗透到各个领域,带来了无数创新和乐趣。今天,我们将一起探索如何搭建一个 AI 版的“谁是卧底”游戏。通过和平台,你将学会如何配置环境、调用大模型接口,最后和展开一场关于“谁是卧底”的脑力对决。(欢迎使用 InternLM 系列开源大模型开发有趣有用的 AI 应用)
2024-12-25 18:54:41
1139
原创 从学员到讲师,AI 萌新任宇鹏在实战营的蜕变之旅
这一套开源框架几乎满足了我对大模型研究的所有需求。回想起半年前,我还坐在电脑边上苦苦思考 Bloom 为什么调不出来,Llama 该怎么扩充词表,实战营结业的时候,连我自己都不相信居然学到了这么多东西。”任宇鹏如是说道。
2024-12-09 11:33:33
535
原创 夺冠之作!揭秘基于InternLM2的离线具身智能导盲犬
InternDog 使用情景模拟器生成的情景数据作为微调数据集,使用XTuner工具基于模型进行微调,然后使用本团队开发的工具对模型进行 W4A16 量化,在宇树 Go1 机器狗板载NVIDIA Jetson Xavier NX (8G)上离线部署。LMDeploy在 Jetson 系列板卡上的移植版本。基于 Function Calling 机制,本团队提出了“多层次离线具身智能开发框架。
2024-12-05 19:52:52
1380
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅