常用算法模板(更新中~)

目录

初始化1:

初始化2:

一、基础算法

1.前缀和:

2.差分:

3.二分:

4.位运算

5.RMQ

二、数据结构

1.并查集:

2.哈希表:

3.栈

4.队列

5.单调栈

6.单调队列

7.链表

8.KMP

9.Trie

10.数组数组:

11.线段树:

三、搜索

1.DFS:

2.BFS:

3.flood fill

4.A*

5.IDA*

四、图论

1.dijkstra

2.spfa

3.floyd

4.bellman-ford

5.prim

6.kruskal

7.二分图

8.差分约束

9.强连通分量

10.双连通分量

11.欧拉回路

12.拓补排序

五、数论

1.质数筛

2.gcd

3.lcm

4.欧拉函数

5.快速幂

六、动态规划

1.01背包

2.完全背包

3.多重背包

4.分组背包

5.背包求方案数

6.二维费用背包


初始化1:

#include <bits/stdc++.h>

#define ioscc ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define endl '\n' 
using namespace std;

typedef unsigned long long ull;
typedef long long ll;
typedef pair<int, int> pii;

const int dx[4] = {-1, 0, 1, 0};
const int dy[4] = {0, 1, 0, -1};
const int MAX = (1ll << 31) - 1;
const int MIN = 1 << 31;
const int N = 1e5 + 10;



int main()
{
    ioscc;

    
    
    return 0;
}

初始化2:

#include <bits/stdc++.h>

#define ioscc ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define endl '\n' 
using namespace std;

typedef unsigned long long ull;
typedef long long ll;
typedef pair<int, int> pii;

const int dx[4] = {-1, 0, 1, 0};
const int dy[4] = {0, 1, 0, -1};
const int MAX = (1ll << 31) - 1;
const int MIN = 1 << 31;
const int N = 1e5 + 10;

void solve()
{
    
}

int main()
{
    ioscc;

    int T;
    cin >> T;
    while(T--)
        solve();

    return 0;
}

一、基础算法

1.前缀和:

一维:

void solve()
{
    int n;
    int s[N];

    cin >> n;
    for (int i = 1; i <= n; i++)
    {
        cin >> s[i];
        s[i] += s[i - 1];
    }

    for (int i = 1; i <= n; i++)
    {
        cout << s[i] << ' ';
    }
    cout << endl;
}

二维:

void solve()
{
    int n, m, q;
    int s[N][N];

    cin >> n >> m >> q;

    for (int i = 1; i <= n; i++)
    {
        for (int j = 1; j <= m; j++)
        {
            cin >> s[i][j];
            s[i][j] += s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1];
        }
    }

    while (q--)
    {
        int x1, y1, x2, y2;
        scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
        printf("%d\n", s[x2][y2] - s[x1 - 1][y2] - s[x2][y1 - 1] + s[x1 - 1][y1 - 1]);
    }
}

2.差分:

一维:

void solve()
{
    int n, m;
    int a[N], b[N];

    cin >> n >> m;
    for (int i = 1; i <= n; i++)
        cin >> a[i];

    for (int i = 1; i <= n; i++)
        b[i] = a[i] - a[i - 1];

    int l, r, v;
    while (m--)
    {
        cin >> l >> r >> v;
        b[l] += v, b[r + 1] -= v;
    }

    for (int i = 1; i <= n; i++)
        b[i] += b[i - 1];

    for (int i = 1; i <= n; i++)
        cout << b[i] << ' ';
    cout << endl;
}

二维:

int n, m, q;
int a[N][N], b[N][N];

void insert(int x1, int y1, int x2, int y2, int v)
{
    b[x1][y1] += v;
    b[x2 + 1][y1] -= v;
    b[x1][y2 + 1] -= v;
    b[x2 + 1][y2 + 1] += v;
}

void solve()
{
    cin >> n >> m >> q;

    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= m; j++)
            cin >> a[i][j];

    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= m; j++)
            insert(i, j, i, j, a[i][j]);

    while (q--)
    {
        int x1, y1, x2, y2, v;
        cin >> x1 >> y1 >> x2 >> y2 >> v;
        insert(x1, y1, x2, y2, v);
    }

    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= m; j++)
            b[i][j] += b[i - 1][j] + b[i][j - 1] - b[i - 1][j - 1];

    for (int i = 1; i <= n; i++)
    {
        for (int j = 1; j <= m; j++)
            cout << b[i][j] << ' ';
        cout << endl;
    }
}

3.二分:

整数:

void solve()
{
    // 前驱
    int l = 0, r = 1e9;
    while (l < r)
    {
        int mid = l + r + 1 >> 1;
        if (check(mid))
            l = mid;
        else
            r = mid - 1;
    }

    cout << l << endl;

    // 后继
    int l = 0, r = 1e9;
    while (l < r)
    {
        int mid = l + r >> 1;
        if (check(mid))
            r = mid;
        else
            l = mid + 1;
    }

    cout << l << endl;
}

实数:

寻找数的三次方根

void solve()
{
    double x;
    cin >> x;

    double l = -100, r = 100;
    while (r - l > 1e-8)
    {
        double mid = (l + r) / 2;
        if (mid * mid * mid >= x)
            r = mid;
        else
            l = mid;
    }

    printf("%.6lf\n", l);
}

4.位运算

lowbit:

int lowbit(int x)
{
    return x & -x;
}

5.RMQ

二、数据结构

1.并查集:

只维护集合:

int p[N];

int find(int x)
{
    if (p[x] != x)
        p[x] = find(p[x]);
    return p[x];
}

void solve()
{
    int n, m;
    cin >> n >> m;

    // 初始化
    for (int i = 1; i <= n; i++)
        p[i] = i;

    /*
        操作1:将a和b放到一个集合中
        操作2:判断a和b是否在一个集合中
    */
    while (m--)
    {
        int op;
        int a, b;
        cin >> op >> a >> b;
        if (op == 1)
        {
            a = find(a), b = find(b);
            p[a] = b;
        }
        else
        {
            a = find(a), b = find(b);
            if (a == b)
                puts("Yes");
            else
                puts("No");
        }
    }
}

维护集合中点的数量:

int p[N];
int s[N];

int find(int x)
{
    if (p[x] != x)
        p[x] = find(p[x]);
    return p[x];
}

void solve()
{
    int n, m;
    cin >> n >> m;

    // 初始化
    for (int i = 1; i <= n; i++)
        p[i] = i, s[i] = 1;

    /*
        操作1:将a和b放到一个集合中
        操作2:判断a和b是否在一个集合中
        操作3:输出连通块中点的数量
    */
    while (m--)
    {
        int op;
        int a, b;
        cin >> op;
        if (op == 1)
        {
            cin >> a >> b;
            a = find(a), b = find(b);
            if (a != b)
            {
                s[b] += s[a];
                p[a] = b;
            }
        }
        else if (op == 2)
        {
            cin >> a >> b;
            a = find(a), b = find(b);
            if (a == b)
                puts("Yes");
            else
                puts("No");
        }
        else
        {
            cin >> a;
            a = find(a);
            cout << s[a] << endl;
        }
    }
}

2.哈希表:

数字哈希 - 开放寻址法:

int h[N];

int find(int x)
{
    int t = (x % N + N) % N;
    while (h[t] != INF && h[t] != x)
    {
        t++;
        if (t == N)
            t = 0;
    }
    return t;
}

void solve()
{
    memset(h, 0x7f, sizeof h);

    int n;
    cin >> n;

    while (n--)
    {
        int op;
        int x;
        cin >> op >> x;

        /*
            操作1:将数字映射到哈希表中
            操作2:判断哈希表中有没有值
        */

        if (op == 1)
            h[find(x)] = x;
        else
        {
            if (h[find(x)] == INF)
                cout << "NO" << endl;
            else
                cout << "YES" << endl;
        }
    }
}

3.栈

4.队列

5.单调栈

6.单调队列

7.链表

8.KMP

9.Trie

10.数组数组:

11.线段树:

三、搜索

1.DFS:

全排列

int n, path[N];
bool st[N];

void dfs(int u)
{
    if (u == n)
    {
        for (int i = 0; i < n; i++)
            cout << path[i] << ' ';
        cout << endl;
    }

    for (int i = 1; i <= n; i++)
    {
        if (!st[i])
        {
            path[u] = i;
            st[i] = 1;
            dfs(u + 1);
            st[i] = 0;
        }
    }
}

void solve()
{
    cin >> n;

    dfs(0);
}

2.BFS:

走迷宫

int n, m;
int g[N][N], d[N][N];

int bfs()
{
    queue<pii> q;

    memset(d, -1, sizeof d);
    d[0][0] = 0;
    q.push({0, 0});

    int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};

    while (q.size())
    {
        auto t = q.front();
        q.pop();

        for (int i = 0; i < 4; i++)
        {
            int x = t.first + dx[i], y = t.second + dy[i];

            if (x >= 0 && x < n && y >= 0 && y < m && g[x][y] == 0 && d[x][y] == -1)
            {
                d[x][y] = d[t.first][t.second] + 1;
                q.push({x, y});
            }
        }
    }

    return d[n - 1][m - 1];
}

void solve()
{
    cin >> n >> m;
    for (int i = 0; i < n; i++)
    {
        for (int j = 0; j < m; j++)
        {
            cin >> g[i][j];
        }
    }

    cout << bfs() << endl;
}

3.flood fill

4.A*

5.IDA*

四、图论

1.dijkstra

2.spfa

3.floyd

4.bellman-ford

5.prim

6.kruskal

7.二分图

8.差分约束

9.强连通分量

10.双连通分量

11.欧拉回路

12.拓补排序

五、数论

1.质数筛

2.gcd

3.lcm

4.欧拉函数

5.快速幂

六、动态规划

1.01背包

2.完全背包

3.多重背包

4.分组背包

5.背包求方案数

6.二维费用背包

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值