概要
本文介绍如何通过Python爬取B站(Bilibili)视频评论数据。关键技术点包括:
- B站API接口分析
- 反爬机制突破(Cookie模拟登录)
- 评论数据存储为结构化CSV文件
- 自动化分页爬取策略
整体架构流程
技术名词解释
- BV号:B站视频的唯一标识符,如
BV1GJ411x7d1
- oid:视频的数字ID,通过API接口转换获得
- SESSDATA:B站登录会话Cookie的关键字段
- API限流:B站对未登录用户限制为每分钟5-10次请求
技术细节
1. 关键API接口
# 获取视频oid
"https://api.bilibili.com/x/web-interface/view?bvid={bvid}"
# 获取评论(分页)
"https://api.bilibili.com/x/v2/reply?type=1&oid={oid}&pn={page}"
2. 反爬解决方案
headers = {
"User-Agent": "Mozilla/5.0...",
"Referer": "https://www.bilibili.com",
"Cookie": "SESSDATA=xxx; bili_jct=xxx" # 需定期更新
}
3. 数据存储优化
# 使用utf-8-sig编码解决Excel乱码
with open(filename, "a", encoding="utf-8-sig") as f:
writer = csv.writer(f)
4. 完整代码实现
import requests
import time
import csv
def get_oid(bvid):
url = f"https://api.bilibili.com/x/web-interface/view?bvid={bvid}"
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36...",
"Cookie": "buvid3=xxx; SESSDATA=xxx" # 需替换实际Cookie
}
try:
response = requests.get(url, headers=headers, timeout=10)
return response.json()['data']['aid']
except Exception as e:
print(f"获取oid失败:{e}")
return None
def get_comments(oid, bvid, page=1):
url = "https://api.bilibili.com/x/v2/reply"
params = {"type":1, "oid":oid, "pn":page, "ps":20}
try:
response = requests.get(url, headers=headers, params=params)
return response.json() if response.status_code == 200 else None
except Exception as e:
print(f"获取评论失败:{e}")
return None
def save_comments(comments, filename="comments.csv"):
with open(filename, "a", newline="", encoding="utf-8-sig") as f:
writer = csv.writer(f)
for comment in comments:
writer.writerow([
comment['member']['uname'],
comment['content']['message'],
comment['like']
])
if __name__ == "__main__":
bvid = input("请输入视频BV号:")
oid = get_oid(bvid)
for page in range(1, 6):
data = get_comments(oid, bvid, page)
if not data: break
save_comments(data['data']['replies'])
time.sleep(1.5) # 遵守API限流
小结
-
技术要点:
- 必须使用有效Cookie绕过登录限制
- 需要控制请求频率(建议≥1.5秒/次)
- 评论数据采用追加写入模式
-
注意事项:
- Cookie有效期约7天,需定期更新
- 商业用途需获得B站官方授权
- 建议增加异常处理和日志记录
-
扩展方向:
- 添加代理IP池应对封禁
- 使用Selenium模拟浏览器获取动态Cookie
- 结合情感分析处理评论内容
声明:本代码仅用于学习交流,请遵守B站用户协议,禁止用于商业用途。建议在爬取前检查robots.txt
文件确认合规性。