有理数及其运算
①有理数可分为:整数、有限小数和无限循环小数。
②无限循环小数属于有理数,因为它们可以转化为分数的形式。
③所有整数都是有理数
④有理数是可以表示为两个整数之比的数,无理数则不能。
1.正数和负数
大于0的数叫正数
在正数前面加上符号“-”(负)的数叫做负数
0既不是正数也不是负数
2.有理数
整数和分数统称为有理数
整数:正整数、负整数、0
分数:正分数、负分数
3.数轴
数轴:人们通常用一条直线上的点表示数,这条直线叫做数轴
这条直线需满足:(1)在直线上任取一点表示数0,这个点叫做原点
(2)通常规定直线上从原点向右(或向上)为正方向,从原点向左(或向下)为负方向
(3)选取适当的单位长度,直线上从原点向右,每隔一个单位长度取一点
数轴三要素:原点 、 正方向 、 单位长度
4.相反数
(1)只有符号不同的两个数叫做互为相反数 例a与 -a互为相反数
(2)0的相反数是0
(3)我们通常把一个数前面添上“-”号,表示这个数的相反数
(4)在一个数前面添上“+”号,表示这个数本身
5.绝对值
定义:一般的,数值上表示数a的点与原点的距离叫做数a的绝对值
正数的绝对值是它本身
负数的绝对值是它的相反数
0的绝对值是0
两个正数,绝对值大的大;两个负数,绝对值大的反而小
6.有理数的加法
(1)同号两数相加,取相同的符号,并把绝对值相加
(2)异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值
(3)互为相反数的两数相加得0
(4)加法交换律:a+b=b+a
(5)加法结合律:(a+b)+c=a+(b+c)
7.有理数的减法
(1)减去一个数等于加上这个数的相反数 a-b=a+(-b)
(2)数字前“-”号是奇数个取“-”
(3)数字前“-”号是偶数个去“+”
8.有理数的乘法
(1)两数相乘,同号得正,异号得负,并把绝对值相乘
(2)任何数与0相乘,都得0
(3)乘积是1的两位数互为倒数
(4)乘法交换率:ab=ba
(5)乘法结合律:(ab)c=a(bc)
(6)乘法分配率:a(b+c)=ab+ac
9.有理数的除法
(1)除以一个不等于0的数等于乘以这个数的倒数
(2)求小数的倒数时,要先把小数化成分数
(3)求带分数的倒数时,要先把带分数化成假分数
(4)0除以任何一个不等于0的数都得0
10.乘方 幂 { 底数 ←aⁿ→指数
(1)求N个相同因数的积的运算叫做乘方
(2)表示负数的乘方,书写时一定要把整个负数(连同符号)用括号括起来
(3)负数的奇数次幂是负数,负数的偶次幂是正数
(4)正数的任何次幂都是整数,0的任何整数次幂都是0,1的任何次幂都是1
(5)先乘方,再乘除,最后加减
11.科学计数法
(1)把一个大于10的数表示成a ×10² 的形式(其中a大于等于1且小于10,n是正整数)
(2)对于小于-10的数,也可以用科学技术法。 例: -267000 = -2.67 ×10的5次方
(3)a×10ⁿ中10的指数总比整数的位数少1
12.近似数
(1)准确数:与实际完全符合的数
(2)近似数:与实际非常接近的数