平行四边形
平行四边形的定义:两组对边分别平行的四边形叫做平行四边形
平行四边形的性质:1.平行四边形的两组对边分别相等,2.平行四边形的两组对角分别相等
平行四边形不相邻的两个顶点连成的线段叫平行四边形的对角线
平行四边形的性质定理:平行四边形的对角线互相平分 平行四边形的邻角互补
平行四边形的判定定理:
(1)两组对边分别相等的四边形是平行四边形
(2)两组对角分别相等的四边形是平行四边形
(3)对角线互相平分的四边形是平行四边形
(4)一组对边平行且相等的四边形是平行四边形
定义:把连接三角形两边中点的线段叫做三角形的中位线
三角形的中位线平行于三角形的第三边,且等于第三边的一半
矩形
矩形的定义:有一个角是直角的平行四边形叫做矩形
矩形是特殊的平行四边形
矩形的一般性质:具备平行四边形的所有性质
性质1:矩形的四个角都是直角
性质2:矩形的对角线相等且互相平分
性质3:矩形的对边平行且相等
对称性:矩形是轴对称图形,也是中心对称形
直角三角形斜边上的中线等于斜边上的一半
矩形的判定方法
(1)方法1:有一个角是直角的平行四边形是矩形
(2)方法2:有三个角是直角的四边形是矩形
(3)方法3:对角线相等的平行四边形是矩形
菱形
定义:一组邻边相等的平行四边形叫做菱形
性质:
(1)菱形是特殊的平行四边形,它具有平行四边形的一切性质
特殊性质:(1)边:菱形的四条边都相等
(2)对角线:菱形的两条对角线互相垂直平分并且每一条对角线平分一组对角
(3)对称性:菱形是轴对称图形,它的对称轴就是对角线所在的直线
判定:
(1)一组邻边相等的平行四边形是菱形
(2)对角线互相垂直的平行四边形是菱形
(3)四边都相等的四边形是菱形
正方形
定义:四条边相等且四个角都是直角的四边形叫做正方形
正方形既是菱形又是矩形
即有一组邻边相等的矩形是正方形
有一个角是直角的菱形是正方形
边:对边相等,四边都相等
角:四个角都是直角
对角线:对角线相等,互相垂直平分,每条对角线平分一组对角
形:是轴对称和中心对称图形