分式

1. A B 为整式,A中含有字母 B/A

2.分式的分子与分母同乘以(或除以)一个不等于0的整式,分式的值不变

3.把分式分子、分母的公因式约去,这种变形叫分式的约分

4.把各分式化成与原来分式相等的同分母的分式叫做分式的通分

5.取各分母的所有因式的最高次幂的乘积做公分母,它叫做最简公分母

6.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母

7.分式的除法法则:分式除以分式,把除式的式子、分母颠倒位置,在与被除式相乘

8.同分母的分数或分式相加减,分母不变,把分子相加减

9.异分母的分式加减法则:先通分,变为同分母的分式,在加减

整数指数幂

1.我们可以利用10的负整数次幂,用科学计数法表示一些绝对值较小的数,即将它们表示成a×10﹣ⁿ(其中n是正整数)

2.零指数幂  当a≠0时,aº=1

3.分母中含有未知数的方程叫做分式方程

4.分母里不含有未知数的方程叫做整式方程

5.产生无解的原因:分式方程两边同乘一个零因式后,所得的根是整式方程的根,而不是分式方程的根

### 分式规划概述 分式规划是一种特殊的数学优化问题,在该类问题中,目标函数被定义为两个函数的比率。这种类型的优化问题广泛应用于经济学、工程设计以及资源分配等领域[^2]。 #### 基本形式 分式规划的一般形式可以表示如下: \[ \min \quad f(x) = \frac{g(x)}{h(x)} \] 其中 \( g(x) \) 和 \( h(x) \) 是定义在可行域上的实值函数,并满足某些条件(如连续性和可微性),且对于所有的 \( x \),\( h(x) > 0 \)。 为了便于求解,通常假设 \( g(x) \) 是凹函数而 \( h(x) \) 是凸函数,这被称为 **Concave-Convex FP** 问题的一种特殊情形。 --- ### 算法实现方法 解决分式规划问题的方法有多种,常见的包括参数化方法和变换技术。以下是两种主要的算法思路及其 Python 实现方式: #### 参数化方法 通过引入辅助变量将原问题转化为一系列标准优化子问题来逐步逼近最优解。具体过程如下: 1. 定义一个新的变量 \( t \in (0, +\infty) \),并重写目标函数为: \[ \max_t \; t \quad \text{s.t.} \; g(x) - th(x) \geq 0. \] 2. 对上述约束优化问题采用数值方法进行迭代求解。 下面是基于 `scipy.optimize` 的简单实现示例: ```python from scipy.optimize import minimize import numpy as np def fractional_objective(t): """目标函数""" return -t # 转换为最大化问题 def constraint_func(x_and_t): """约束条件 g(x) >= t * h(x)""" x, t = x_and_t[:-1], x_and_t[-1] g_x = sum(-xi**2 for xi in x) # 示例中的 g(x) h_x = sum(xi**2 for xi in x) + 1e-8 # 示例中的 h(x), 加一个小量防止除零 return g_x - t * h_x # 初始猜测 initial_guess = [1, 1, 1] # 根据实际问题调整维度 constraints = { 'type': 'ineq', 'fun': lambda x: constraint_func(np.append(x[:len(initial_guess)-1], x[-1])) } result = minimize(fractional_objective, initial_guess, constraints=[constraints]) print(result.x, result.fun) ``` 此代码片段展示了如何利用 SciPy 工具包处理简单的分式规划实例。 #### Dinkelbach 方法 Dinkelbach 提出了另一种经典算法用于求解分式规划问题。其核心思想在于反复更新估计值直至收敛到全局极值点附近。这种方法特别适合于 Concave-Convex 类型的问题。 伪代码描述如下: 1. 初始化 \( λ_0 = 0 \); 2. 构造新的目标函数 \( F_k(x) := g(x)/h(x) - λ_{k-1} \cdot h(x) \); 3. 解决单目标优化问题得到当前最佳候选方案; 4. 更新 \( λ_k \leftarrow g(\hat{x})/h(\hat{x}) \); 5. 如果前后两次计算结果差异小于设定阈值,则停止循环;否则返回第 2 步继续执行。 --- ### 应用场景举例 分式规划的实际应用场景非常丰富,比如在网络流量管理领域中用来衡量链路利用率或者端到端延迟性能指标等。另一个典型例子是在金融投资组合分析方面,投资者希望找到能使收益风险比例最大的资产配置策略。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值