蓝桥杯12届国B 纯质数

题目描述

如果一个正整数只有 1 和它本身两个约数,则称为一个质数(又称素数)。

前几个质数是:2,3,5,7,11,13,17,19,23,29,31,37,⋅⋅⋅ 。

如果一个质数的所有十进制数位都是质数,我们称它为纯质数。例如:2,3,5,7,23,37 都是纯质数,而 11,13,17,19,29,31 不是纯质数。当然 1,4,35 也不是纯质数。

请问,在 1 到 202106052 中,有多少个纯质数?

 

先判断“纯质数”(每一位都由2,3,5,7组成的数),再从纯质数中找质数,就不会超时了 

#include<iostream>
#include<cmath>
using namespace std;

int ans;

int prime(int x)
{
	if(x<2) return 0;
	if(x==2) return 1;
	for(int i=2; i<=sqrt(x); ++i)
	{
		if(x%i==0) return 0;
	}
	return 1;
}

int chun_prime(int x)
{
	while(x)
	{
		int temp = x%10;
		if(temp!=2 && temp!=3 && temp!=5 &&temp!=7)
		{
			return 0;
		}
		x /= 10;
	}
	return 1;
}

int main()
{
	for(int i=2; i<=20210605; ++i)
	{
		if(chun_prime(i) && prime(i)) ans++;
	}
	
	cout<<ans;
	
	return 0;
}
### 第六蓝桥杯C语言B组省赛试题及解析 #### 一、题目概述 第六蓝桥杯C语言B组省赛涵盖了多个编程挑战,涉及算法设计、数据结构应用等方面的知识。比赛旨在考察参赛者的逻辑思维能力和编程技巧。 #### 二、具体题目分析 ##### 题目1:方阵填数 给定一个n×n的矩阵,按照特定规律填充数字并输出该矩阵。此题主要测试考生对二维数组的操作能力以及循环控制语句的应用[^4]。 ```c #include <stdio.h> int main() { int n; scanf("%d", &n); int matrix[n][n]; // 填充矩阵逻辑 for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { printf("%d ", matrix[i][j]); } printf("\n"); } return 0; } ``` ##### 题目2:格子中输出 本题要求根据输入字符串`buf`和宽度参数`width`,在指定区域内居中显示文字,并通过格式化输出实现。这里的关键在于理解`printf()`函数中的格式说明符及其作用方式。 ```c #include <stdio.h> #include <string.h> int main() { char buf[] = "example"; int width = 20; printf("%*s%s%*s", (width - 2 - strlen(buf)) / 2, " ", buf, (width - 1 - strlen(buf)) / 2, " "); return 0; } ``` ##### 题目3:三部曲之分解质因数 对于任意正整数N,求其所有不同的质因子乘积形式表示法的数量。这类问题通常涉及到数学概念的理解与运用,特别是关于素数筛选的方法[^1]。 ##### 题目4:特别数的和 定义某种特殊性质的自然数序列S={a_1,a_2,...,a_n},其中每个元素满足一定条件。计算集合内所有符合条件成员总和。此类题目往往需要巧妙利用位运算优化性能。 ##### 题目5:九宫幻方 构建一个由连续奇数构成且各行各列斜线上的数值相加等于固定常量K的3x3阶魔方阵。这是经典的组合数学难题之一,在实际解答过程中可能需要用到回溯法或其他高级搜索策略。 ##### 题目6:牌型种数 假设一副扑克牌共有m张不同花色的牌面,从中随机抽取若干张组成一手完整的手牌,则存在多少种可能性?这是一道典型的排列组合类问题,解决它不仅考验选手的基础理论功底也检验着大家灵活处理复杂场景的能力。 ##### 题目7:剪邮票 给出一张矩形纸片上印有的连通区域图案,问能否沿着边界裁切成多份独立的小块而不破坏任何图形连接关系。这是一个几何拓扑学领域内的趣味小品,解决方案可以采用图论模型来描述物体间的邻接特性。 ##### 题目8:买不到的数目 已知某商店售卖商品单价分别为A元和B元两种规格,顾客仅能购买这两种价格的商品组合成总价X元,请找出无法凑齐的最大金额Y。这个问题可以通过动态规划的思想来进行有效破解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值