轴承寿命预测全家桶更新!新增西交XJTU-SY数据集+预测模型合集

往期精彩内容:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理

基于FFT + CNN - BiGRU-Attention 时域、频域特征注意力融合的轴承故障识别模型-CSDN博客

基于FFT + CNN - Transformer 时域、频域特征融合的轴承故障识别模型-CSDN博客

Python轴承故障诊断 (11)基于VMD+CNN-BiGRU-Attenion的故障分类-CSDN博客

Python轴承故障诊断 (13)基于故障信号特征提取的超强机器学习识别模型-CSDN博客

Python轴承故障诊断 (14)高创新故障识别模型-CSDN博客

Python轴承故障诊断 (15)基于CNN-Transformer的一维故障信号识别模型-CSDN博客

Python轴承故障诊断 (16)高创新故障识别模型(二)-CSDN博客

轴承故障全家桶更新 | 基于时频图像的分类算法-CSDN博客

Python轴承故障诊断 (17)基于TCN-CNN并行的一维故障信号识别模型-CSDN博客

独家原创 | SCI 1区 高创新轴承故障诊断模型!-CSDN博客

基于 GADF+Swin-CNN-GAM 的高创新轴承故障诊断模型-CSDN博客

Python轴承故障诊断 (18)基于CNN-TCN-Attention的创新诊断模型-CSDN博客

注意力魔改 | 超强轴承故障诊断模型!-CSDN博客

轴承故障全家桶更新 | 基于VGG16的时频图像分类算法-CSDN博客

轴承故障全家桶更新 | CNN、LSTM、Transformer、TCN、串行、并行模型、时频图像、EMD分解等集合​都在这里-CSDN博客

Python轴承故障诊断 (19)基于Transformer-BiLSTM的创新诊断模型-CSDN博客

Python轴承故障诊断 (20)高创新故障识别模型(三)-CSDN博客

视觉顶会论文 | 基于Swin Transformer的轴承故障诊断-CSDN博客

Python轴承故障诊断 | 多尺度特征交叉注意力融合模型-CSDN博客

SHAP 模型可视化 + 参数搜索策略在轴承故障诊断中的应用-CSDN博客

速发论文 | 基于 2D-SWinTransformer+1D-CNN-SENet并行故障诊断模型-CSDN博客

Python轴承故障诊断 (21)基于VMD-CNN-BiTCN的创新诊断模型-CSDN博客

1DCNN-2DResNet并行故障诊断模型-CSDN博客

基于改进1D-VGG模型的轴承故障诊断和t-SNE可视化-CSDN博客

基于K-NN + GCN的轴承故障诊断模型-CSDN博客

故障诊断 | 创新模型更新:基于SSA-CNN-Transformer诊断模型-CSDN博客

独家首发 | 基于 2D-SwinTransformer + BiGRU-GlobalAttention的并行故障诊断模型-CSDN博客

位置编码祛魅 | 详解Transformer中位置编码Positional Encoding-CSDN博客

创新点 | 基于快速傅里叶卷积(FFC) 的故障诊断模型-CSDN博客

代码开源! | 变工况下的域对抗图卷积网络故障诊断-CSDN博客

超强 !顶会创新融合!基于 2D-SWinTransformer 的并行分类网络-CSDN博客

多模态-故障诊断 | 大核卷积开启视觉新纪元!-CSDN博客

超强!一区直接写!基于SSA+Informer-SENet故障诊断模型-CSDN博客

Transformer结构优势 ,How Much Attention Do You Need?-CSDN博客

故障诊断 | 一个小创新:特征提取+KAN分类-CSDN博客

故障诊断 | 信号降噪算法合集-CSDN博客

图卷积故障诊断,新增GAT、SGCN、GIN分类模型-CSDN博客

不能错过!故障诊断+时频图像分类大更新!-CSDN博客

智能故障诊断和寿命预测期刊推荐-CSDN博客

故障诊断一区直接写,图卷积+BiGRU-Attention 并行诊断模型-CSDN博客

故障诊断高创新!基于1D-GRU+2D-MTF-ResNet-CBAM的多模态融合分类模型_基于1dcnn-informer+matt融合的故障诊断模型-CSDN博客

创新首发! | 基于1DCNN-Informer+MATT融合的故障诊断模型_论文复现基于 1dcnn bilstm 的航空发动机故障分类研究-CSDN博客

轴承故障特征—SHAP 模型 3D 可视化_shap值溯源模型-CSDN博客

时频图像/多模态+顶会论文创新,故障诊断发文不是梦!-CSDN博客

江南大学轴承故障诊断教程+1DVGG-6种注意力机制合集!-CSDN博客

模型简介:

继上期推出的基于 PHM2012 数据集的轴承寿命预测(Python)合集:(购买过的同学请及时去网页端更新代码模型!)

重磅!轴承寿命预测全家桶来了!

本期我们继续更新轴承寿命预测合集:新增XJTU-SY 滚动轴承加速寿命试验数据集相关预测模型,提供LSTM、CNN、GRU、TCN、Transformer、CNN-LSTM、CNN-Transformer、Transformer-BiLSTM等系列预测模型全家桶:

● 数据集:XJTU-SY 滚动轴承加速寿命试验数据集

● 环境框架:python 3.9  pytorch 2.1 及其以上版本均可运行

● 使用对象:入门学习,论文需求者

● 代码保证:代码注释详细、即拿即可跑通。

● 配套文件:详细的环境配置安装教程,模型、参数讲解文档

包括完整流程数据代码处理:

数据集制作、数据加载、模型定义、参数设置、模型训练、模型测试、预测可视化、模型评估

全网最低价,入门轴承寿命预测最佳教程,高性价比、高质量代码,大家可以了解一下:(所有全家桶模型会不断加入新的模型进行更新!后续会逐渐提高价格,越早购买性价比越高!!!一次购买,享受永久免费更新福利!

前言

本实验采用XJTU-SY 滚动轴承加速寿命试验数据集。如图所示,该平台由交流电动机、电动机转速控制 器、转轴、支撑轴承、液压加载系统和测试轴承等 组成,能够在不同运行条件下对轴承进行加速退化 实验,并获得完整的运行至失效数据。径向力由液 压加载系统产生并施加到被测轴承的壳体上,转速 由交流感应电机的速度控制器设定并保持。采样频率设置为 25.6 kHz,每 1 min 记录32 768 个数据点(即每1 min 的采样时间为1.28 s)。

试验共设计了3类工况,如表2所示,每类工况下有5个轴承。三种工况下的数据的划分详情如下表所示:

1 数据预处理与可视化

1.1 Bearing1_1数据可视化

轴承数据集中含有水平加速度数据和垂直加速度数据,与垂直加速度数据相比,水平加速度数据能够提供更多的有效退化信息,因此使用水平方向的加速度数据进行实验. 实验将 35Hz12kN 工况下轴承 1-1、 1-2 作为训练集,轴承 1-3 作为测试集,进行模型实验。

1.2 数据预处理

选择峭度、熵值、分形值、波形指标、频谱指标、频域指标、 统计特征、振动特征等13种指标来捕捉轴承信号的多尺度特征,作为剩余寿命预测模型的训练与测试。

2 基于 Python 的轴承剩余寿命预测模型

2.1 GRU 预测模型

2.2 TCN 预测模型

2.3 Transformer-BiLSTM预测模型

2.4 Transformer-BiLSTM 预测模型评估

2.5 模型对比

详细介绍见解说视频!

3 代码、数据整理如下:

相关数据集预处理、文件说明、对比模型代码如下

点击下方卡片获取代码!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值