免费获取 | 时间序列常用数据集、可视化代码

往期精彩内容:

时序预测:LSTM、ARIMA、Holt-Winters、SARIMA模型的分析与比较

全是干货 | 数据集、学习资料、建模资源分享!

EMD变体分解效果最好算法——CEEMDAN(五)-CSDN博客

拒绝信息泄露!VMD滚动分解 + Informer-BiLSTM并行预测模型-CSDN博客

单步预测-风速预测模型代码全家桶-CSDN博客

CEEMDAN +组合预测模型(BiLSTM-Attention + ARIMA)-CSDN博客

CEEMDAN +组合预测模型(Transformer - BiLSTM + ARIMA)-CSDN博客

基于麻雀优化算法SSA的CEEMDAN-BiLSTM-Attention的预测模型-CSDN博客

基于麻雀优化算法SSA的CEEMDAN-Transformer-BiGRU预测模型-CSDN博客

半天入门!锂电池剩余寿命预测(Python)-CSDN博客

超强预测模型:二次分解-组合预测-CSDN博客

VMD + CEEMDAN 二次分解,BiLSTM-Attention预测模型-CSDN博客

超强预测算法:XGBoost预测模型-CSDN博客

基于麻雀优化算法SSA的预测模型——代码全家桶-CSDN博客

VMD + CEEMDAN 二次分解,CNN-Transformer预测模型-CSDN博客

独家原创 | SCI 1区 高创新预测模型!-CSDN博客

风速预测(八)VMD-CNN-Transformer预测模型-CSDN博客

高创新 | CEEMDAN + SSA-TCN-BiLSTM-Attention预测模型-CSDN博客

VMD + CEEMDAN 二次分解,Transformer-BiGRU预测模型-CSDN博客

独家原创 | 超强组合预测模型!-CSDN博客

全网最低价 | 全家桶持续更新!-CSDN博客

独家原创 | 基于TCN-SENet +BiGRU-GlobalAttention并行预测模型-CSDN博客

VMD + CEEMDAN 二次分解——创新预测模型合集-CSDN博客

独家原创 | BiTCN-BiGRU-CrossAttention融合时空特征的高创新预测模型-CSDN博客

CEEMDAN +组合预测模型(CNN-Transfromer + XGBoost)-CSDN博客

时空特征融合的BiTCN-Transformer并行预测模型-CSDN博客

独家首发 | 基于多级注意力机制的并行预测模型-CSDN博客

独家原创 | CEEMDAN-CNN-GRU-GlobalAttention + XGBoost组合预测-CSDN博客

多步预测系列 | LSTM、CNN、Transformer、TCN、串行、并行模型集合-CSDN博客

独家原创 | CEEMDAN-Transformer-BiLSTM并行 + XGBoost组合预测-CSDN博客

回归预测模型 | LSTM、CNN、Transformer、TCN、串行、并行模型集合-CSDN博客

优化算法更新 | 基于WOA-CNN-BiLSTM的多步预测模型-CSDN博客

CEEMDAN-CNN-BiLSTM多步预测模型-CSDN博客

超强预测模型 | 回归预测合集大更新-CSDN博客

单变量、多特征变量多步预测模型大更新-CSDN博客

速成创新 | 基于KAN、KAN卷积的预测模型-CSDN博客

免费分享6个广泛应用的时间序列数据集和对应的可视化代码:

  • 电变压器温度(ETT)

  • 交通(Traffic)

  • 电力消耗(Electricity)

  • 汇率(Exchange Rate)

  • 天气(Weather)

  • 疾病(Illness)

这些数据集不仅在学术研究中有着广泛的应用,同时也在实际的工业、金融和公共卫生领域发挥着重要作用。通过分析这些数据集,我们可以更好地掌握时间序列分析的基本原理和方法,并应用于实际问题的解决。接下来,让我们逐一了解这六个数据集的具体内容和应用场景。

数据集、可视化代码获取方式,见文末

1 ETT (电力变压器温度)

数据集简介:

电力变压器温度(ETT)是电力长期部署的关键指标。该数据集由我国两个独立县的2年数据组成。为了探索长序列时间序列预测(LSTF)问题的粒度,创建了不同的子集,{ETTh1,ETTh2}用于1小时级别,ETTm1用于15分钟级别。每个数据点由目标值“油温”和6个电力负载特征组成。

● 变量个数:7个,目标变量-温度

● 时间步:17420 个样本

● 时间粒度:小时

2 Traffic (交通)

数据集简介:

描述了道路占用率。它包含 2015 年至 2016 年旧金山高速公路传感器记录的每小时数据。不同列代码不同的道路(道路编号从0-860)。

● 变量个数:862,目标变量-道路占用率

● 时间步:17544 个样本

● 时间粒度:小时

3 Electricity (电力)

数据集简介:

从 2012 年到 2014 年收集了 321 个客户每小时电力消耗(用户编号从0-319-OT)。

● 变量个数:321

● 时间步:26304 个样本

● 时间粒度:小时

4 Exchange-Rate (汇率)

数据集简介:

收集了 1990 年至 2016 年 8 个国家的每日汇率(国家编号从0-6-OT,0:澳大利亚汇率,1:英国汇率,2:加拿大汇率,3:瑞士汇率,4:中国汇率,5:日本汇率,6:新西兰汇率,OT:新加坡汇率)。

● 变量个数:8

● 时间步:7588个样本

● 时间粒度:天

5 Weather (天气)

数据集简介:

包括 21 个天气指标,例如空气温度和湿度等。它的数据在 2020 年的每 10 分钟记录一次。

● 变量个数:21

● 时间步:52696 个样本

● 时间粒度:10分钟

ILI (疾病)

数据集简介:

包括 2002 年至 2021 年美国疾病控制和预防中心每周数据。描述了患有流感疾病的患者与患者数量的比率。(WEIGHTED ILI:加权比率,UNWEIGHTED ILI:非加权比率,AGE 0-4:0-4岁患者数量,AGE 5-24:5-24岁患者数量,ILITOTAL:患有流感疾病的患者总数,NUM. OF PROVIDERS:提供人数,OT:患者数量)

● 变量个数:7

● 时间步:966个样本

● 时间粒度:周

获取方式一:

获取方式二:

点击下方卡片获取代码!

回复”时间序列“免费获取数据集和可视化代码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值