往期精彩内容:
时序预测:LSTM、ARIMA、Holt-Winters、SARIMA模型的分析与比较
EMD变体分解效果最好算法——CEEMDAN(五)-CSDN博客
拒绝信息泄露!VMD滚动分解 + Informer-BiLSTM并行预测模型-CSDN博客
CEEMDAN +组合预测模型(BiLSTM-Attention + ARIMA)-CSDN博客
CEEMDAN +组合预测模型(Transformer - BiLSTM + ARIMA)-CSDN博客
基于麻雀优化算法SSA的CEEMDAN-BiLSTM-Attention的预测模型-CSDN博客
基于麻雀优化算法SSA的CEEMDAN-Transformer-BiGRU预测模型-CSDN博客
VMD + CEEMDAN 二次分解,BiLSTM-Attention预测模型-CSDN博客
基于麻雀优化算法SSA的预测模型——代码全家桶-CSDN博客
VMD + CEEMDAN 二次分解,CNN-Transformer预测模型-CSDN博客
风速预测(八)VMD-CNN-Transformer预测模型-CSDN博客
高创新 | CEEMDAN + SSA-TCN-BiLSTM-Attention预测模型-CSDN博客
VMD + CEEMDAN 二次分解,Transformer-BiGRU预测模型-CSDN博客
独家原创 | 基于TCN-SENet +BiGRU-GlobalAttention并行预测模型-CSDN博客
VMD + CEEMDAN 二次分解——创新预测模型合集-CSDN博客
独家原创 | BiTCN-BiGRU-CrossAttention融合时空特征的高创新预测模型-CSDN博客
CEEMDAN +组合预测模型(CNN-Transfromer + XGBoost)-CSDN博客
时空特征融合的BiTCN-Transformer并行预测模型-CSDN博客
独家首发 | 基于多级注意力机制的并行预测模型-CSDN博客
独家原创 | CEEMDAN-CNN-GRU-GlobalAttention + XGBoost组合预测-CSDN博客
多步预测系列 | LSTM、CNN、Transformer、TCN、串行、并行模型集合-CSDN博客
独家原创 | CEEMDAN-Transformer-BiLSTM并行 + XGBoost组合预测-CSDN博客
回归预测模型 | LSTM、CNN、Transformer、TCN、串行、并行模型集合-CSDN博客
优化算法更新 | 基于WOA-CNN-BiLSTM的多步预测模型-CSDN博客
CEEMDAN-CNN-BiLSTM多步预测模型-CSDN博客
速成创新 | 基于KAN、KAN卷积的预测模型-CSDN博客
免费分享6个广泛应用的时间序列数据集和对应的可视化代码:
-
电变压器温度(ETT)
-
交通(Traffic)
-
电力消耗(Electricity)
-
汇率(Exchange Rate)
-
天气(Weather)
-
疾病(Illness)
这些数据集不仅在学术研究中有着广泛的应用,同时也在实际的工业、金融和公共卫生领域发挥着重要作用。通过分析这些数据集,我们可以更好地掌握时间序列分析的基本原理和方法,并应用于实际问题的解决。接下来,让我们逐一了解这六个数据集的具体内容和应用场景。
数据集、可视化代码获取方式,见文末
1 ETT (电力变压器温度)
数据集简介:
电力变压器温度(ETT)是电力长期部署的关键指标。该数据集由我国两个独立县的2年数据组成。为了探索长序列时间序列预测(LSTF)问题的粒度,创建了不同的子集,{ETTh1,ETTh2}用于1小时级别,ETTm1用于15分钟级别。每个数据点由目标值“油温”和6个电力负载特征组成。
● 变量个数:7个,目标变量-温度
● 时间步:17420 个样本
● 时间粒度:小时
2 Traffic (交通)
数据集简介:
描述了道路占用率。它包含 2015 年至 2016 年旧金山高速公路传感器记录的每小时数据。不同列代码不同的道路(道路编号从0-860)。
● 变量个数:862,目标变量-道路占用率
● 时间步:17544 个样本
● 时间粒度:小时
3 Electricity (电力)
数据集简介:
从 2012 年到 2014 年收集了 321 个客户每小时电力消耗(用户编号从0-319-OT)。
● 变量个数:321
● 时间步:26304 个样本
● 时间粒度:小时
4 Exchange-Rate (汇率)
数据集简介:
收集了 1990 年至 2016 年 8 个国家的每日汇率(国家编号从0-6-OT,0:澳大利亚汇率,1:英国汇率,2:加拿大汇率,3:瑞士汇率,4:中国汇率,5:日本汇率,6:新西兰汇率,OT:新加坡汇率)。
● 变量个数:8
● 时间步:7588个样本
● 时间粒度:天
5 Weather (天气)
数据集简介:
包括 21 个天气指标,例如空气温度和湿度等。它的数据在 2020 年的每 10 分钟记录一次。
● 变量个数:21
● 时间步:52696 个样本
● 时间粒度:10分钟
6 ILI (疾病)
数据集简介:
包括 2002 年至 2021 年美国疾病控制和预防中心每周数据。描述了患有流感疾病的患者与患者数量的比率。(WEIGHTED ILI:加权比率,UNWEIGHTED ILI:非加权比率,AGE 0-4:0-4岁患者数量,AGE 5-24:5-24岁患者数量,ILITOTAL:患有流感疾病的患者总数,NUM. OF PROVIDERS:提供人数,OT:患者数量)
● 变量个数:7
● 时间步:966个样本
● 时间粒度:周
获取方式一:
获取方式二:
点击下方卡片获取代码!
回复”时间序列“免费获取数据集和可视化代码