往期精彩内容:
时序预测:LSTM、ARIMA、Holt-Winters、SARIMA模型的分析与比较
EMD变体分解效果最好算法——CEEMDAN(五)-CSDN博客
拒绝信息泄露!VMD滚动分解 + Informer-BiLSTM并行预测模型-CSDN博客
CEEMDAN +组合预测模型(BiLSTM-Attention + ARIMA)-CSDN博客
CEEMDAN +组合预测模型(Transformer - BiLSTM + ARIMA)-CSDN博客
基于麻雀优化算法SSA的CEEMDAN-BiLSTM-Attention的预测模型-CSDN博客
基于麻雀优化算法SSA的CEEMDAN-Transformer-BiGRU预测模型-CSDN博客
VMD + CEEMDAN 二次分解,BiLSTM-Attention预测模型-CSDN博客
基于麻雀优化算法SSA的预测模型——代码全家桶-CSDN博客
VMD + CEEMDAN 二次分解,CNN-Transformer预测模型-CSDN博客
风速预测(八)VMD-CNN-Transformer预测模型-CSDN博客
高创新 | CEEMDAN + SSA-TCN-BiLSTM-Attention预测模型-CSDN博客
VMD + CEEMDAN 二次分解,Transformer-BiGRU预测模型-CSDN博客
独家原创 | 基于TCN-SENet +BiGRU-GlobalAttention并行预测模型-CSDN博客
VMD + CEEMDAN 二次分解——创新预测模型合集-CSDN博客
独家原创 | BiTCN-BiGRU-CrossAttention融合时空特征的高创新预测模型-CSDN博客
CEEMDAN +组合预测模型(CNN-Transfromer + XGBoost)-CSDN博客
时空特征融合的BiTCN-Transformer并行预测模型-CSDN博客
独家首发 | 基于多级注意力机制的并行预测模型-CSDN博客
独家原创 | CEEMDAN-CNN-GRU-GlobalAttention + XGBoost组合预测-CSDN博客
多步预测系列 | LSTM、CNN、Transformer、TCN、串行、并行模型集合-CSDN博客
独家原创 | CEEMDAN-Transformer-BiLSTM并行 + XGBoost组合预测-CSDN博客
回归预测模型 | LSTM、CNN、Transformer、TCN、串行、并行模型集合-CSDN博客
优化算法更新 | 基于WOA-CNN-BiLSTM的多步预测模型-CSDN博客
CEEMDAN-CNN-BiLSTM多步预测模型-CSDN博客
● 环境框架:python 3.9 pytorch 1.8 及其以上版本均可运行
● 配套文件:详细的环境配置安装教程,模型、参数讲解文档
● 价格:99.8(性价比极高!)
● 使用对象:论文需求、毕业设计需求者
● 代码保证:代码注释详细、即拿即可跑通。
更新介绍:
1. 新增注意力机制模型:
2. 新增组合预测模型:
包括完整流程数据代码处理:
回归预测数据集制作、数据加载、模型定义、参数设置、模型训练、模型测试、预测可视化、模型评估
全网最低价,入门回归预测最佳教程,高性价比、高质量代码,大家可以了解一下:(所有全家桶模型会不断加入新的模型进行更新!后续会逐渐提高价格,越早购买性价比越高!!!)一次购买,享受永久免费更新福利!
配有代码、文件介绍:
前言
本文基于 Kaggle平台—洪水数据集的回归预测(文末附数据集),介绍一种全家桶中超强回归预测模型XGBoost。
数据集共50000个样本,20个特征,来预测FloodProbability(洪水概率): 该结果变量基于上述因素预测洪水的可能性,可能表示为0到1之间的概率。
1 数据预处理
2 基于XGBoost的回归预测模型
2.1 XGBoost 参数寻优过程
树的棵树
树的深度
学习率
3 结果可视化和预测、模型评估
3.1 预测结果可视化
3.2 模型评估
全家桶中其他模型预测可视化效果: