如何利用 LSTM 预测上证指数未来值

往期精彩内容:

单步预测-风速预测模型代码全家桶-CSDN博客

半天入门!锂电池剩余寿命预测(Python)-CSDN博客

超强预测模型:二次分解-组合预测-CSDN博客

VMD + CEEMDAN 二次分解,BiLSTM-Attention预测模型-CSDN博客

超强预测算法:XGBoost预测模型-CSDN博客

基于麻雀优化算法SSA的预测模型——代码全家桶-CSDN博客

VMD + CEEMDAN 二次分解,CNN-Transformer预测模型-CSDN博客

独家原创 | SCI 1区 高创新预测模型!-CSDN博客

风速预测(八)VMD-CNN-Transformer预测模型-CSDN博客

高创新 | CEEMDAN + SSA-TCN-BiLSTM-Attention预测模型-CSDN博客

VMD + CEEMDAN 二次分解,Transformer-BiGRU预测模型-CSDN博客

独家原创 | 基于TCN-SENet +BiGRU-GlobalAttention并行预测模型-CSDN博客

VMD + CEEMDAN 二次分解——创新预测模型合集-CSDN博客

独家原创 | BiTCN-BiGRU-CrossAttention融合时空特征的高创新预测模型-CSDN博客

CEEMDAN +组合预测模型(CNN-Transfromer + XGBoost)-CSDN博客

时空特征融合的BiTCN-Transformer并行预测模型-CSDN博客

独家首发 | 基于多级注意力机制的并行预测模型-CSDN博客

独家原创 | CEEMDAN-CNN-GRU-GlobalAttention + XGBoost组合预测-CSDN博客

多步预测系列 | LSTM、CNN、Transformer、TCN、串行、并行模型集合-CSDN博客

独家原创 | CEEMDAN-Transformer-BiLSTM并行 + XGBoost组合预测-CSDN博客

涨点创新 | 基于 Informer-LSTM的并行预测模型-CSDN博客

独家原创 | 基于 Informer + TCN-SENet的并行预测模型-CSDN博客

即插即用 | 时间编码+LSTM+全局注意力-CSDN博客

粉丝福利 | 再添 Seq2Seq 多步预测模型-CSDN博客

暴力涨点! | 基于 Informer+BiGRU-GlobalAttention的并行预测模型-CSDN博客

热点创新 | 基于 KANConv-GRU并行的多步预测模型-CSDN博客

重大更新!锂电池剩余寿命预测新增 CALCE 数据集_calce数据集-CSDN博客

注意:本次教程是针对往期时间序列模型的一次补充,来实现对未来数据预测的简单示例!

在大部分预测任务的论文里面,一般不需要对未来数据进行预测的可视化展示(只展示模型对历史数据的拟合效果,原因是得不到未来的真实数据,不好评估预测拟合效果,所以会拿部分已知数据集划分为测试集,来充当未来数据进行可视化拟合效果展示)。而在实际项目里面,可能需要对未来数据进行预测,本期作品将介绍如何利用训练好的模型,来预测未来数据!

前言

本文基于2024-1-1到2024-10-26的上证指数收盘价格历史数据(文末附数据集),先经过数据预处理和制作加载,然后通过 Pytorch 实现 LSTM 模型对未来10个交易日收盘价格的预测。预测走势如下:

● 数据集:上证指数收盘价格历史数据

● 环境框架:python 3.9  pytorch 1.8 及其以上版本均可运行

● 使用对象:论文需求、毕业设计、项目需求者

● 代码保证:代码注释详细、即拿即可跑通。

1 数据集介绍与预处理

1.1 导入数据集

从年初到10.25日,一共195个交易日数据:

取收盘价格为目标预测值!

1.2 数据集制作

按照 8:2 划分训练集,测试集,滑动窗口设置为7

基于Pytorch的 LSTM 预测模型

2.1 定义 LSTM 预测模型

2.2 设置参数,训练模型

注意调整参数:

  • 可以修改LSTM层数和每层神经元个数;

  • 增加更多的 epoch (注意防止过拟合)

  • 可以改变滑动窗口长度(设置合适的窗口长度)

3 模型评估与可视化

3.1 结果可视化

3.2 模型评估

4 预测未来数据

4.1 预测思路

第一步:加载训练好的模型,加载历史数据;

第二步:初始化未来预测序列和交易日时间;

第三步:按照训练的输入方式,即用过去历史的 7 步,预测未来 1步,所以用最后的7步历史数据,来预测未来第一天的数据,然后更新这个7个数值的窗口序列,即每预测一次,删除第一个数据,然后把预测的结果加入到最后一个(把预测值当作已知值,预测下一步);

4.2 预测结果可视化

单独预测结果:

结合历史数据可视化:

该模型已经在如下四个全家桶里面更新,请购买过的同学及时更新下载:

(1)单步预测全家桶

最强更新 | 一次拥有,全面掌握 Python 时间序列预测

(2)多步预测全家桶

热点创新 | 基于 KANConv-GRU并行的多步预测模型

(3)麻雀优化算法—创新预测模型全家桶

图片

下载链接:https://mbd.pub/o/bread/mbd-ZZuWlZxr

(4)二次分解——创新模型预测全家桶

VMD + CEEMDAN 二次分解,TCN-Transformer并行预测模型

图片

5 代码、数据整理如下:

点击下方卡片获取代码!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值