快速傅里叶变换暴力涨点!基于时频特征融合的高创新时间序列分类模型

往期精彩内容:

单步预测-风速预测模型代码全家桶-CSDN博客

半天入门!锂电池剩余寿命预测(Python)-CSDN博客

超强预测模型:二次分解-组合预测-CSDN博客

VMD + CEEMDAN 二次分解,BiLSTM-Attention预测模型-CSDN博客

超强预测算法:XGBoost预测模型-CSDN博客

基于麻雀优化算法SSA的预测模型——代码全家桶-CSDN博客

VMD + CEEMDAN 二次分解,CNN-Transformer预测模型-CSDN博客

独家原创 | SCI 1区 高创新预测模型!-CSDN博客

风速预测(八)VMD-CNN-Transformer预测模型-CSDN博客

高创新 | CEEMDAN + SSA-TCN-BiLSTM-Attention预测模型-CSDN博客

VMD + CEEMDAN 二次分解,Transformer-BiGRU预测模型-CSDN博客

独家原创 | 基于TCN-SENet +BiGRU-GlobalAttention并行预测模型-CSDN博客

VMD + CEEMDAN 二次分解——创新预测模型合集-CSDN博客

独家原创 | BiTCN-BiGRU-CrossAttention融合时空特征的高创新预测模型-CSDN博客

CEEMDAN +组合预测模型(CNN-Transfromer + XGBoost)-CSDN博客

时空特征融合的BiTCN-Transformer并行预测模型-CSDN博客

独家首发 | 基于多级注意力机制的并行预测模型-CSDN博客

独家原创 | CEEMDAN-CNN-GRU-GlobalAttention + XGBoost组合预测-CSDN博客

多步预测系列 | LSTM、CNN、Transformer、TCN、串行、并行模型集合-CSDN博客

独家原创 | CEEMDAN-Transformer-BiLSTM并行 + XGBoost组合预测-CSDN博客

涨点创新 | 基于 Informer-LSTM的并行预测模型-CSDN博客

独家原创 | 基于 Informer + TCN-SENet的并行预测模型-CSDN博客

即插即用 | 时间编码+LSTM+全局注意力-CSDN博客

粉丝福利 | 再添 Seq2Seq 多步预测模型-CSDN博客

暴力涨点! | 基于 Informer+BiGRU-GlobalAttention的并行预测模型-CSDN博客

热点创新 | 基于 KANConv-GRU并行的多步预测模型-CSDN博客

重大更新!锂电池剩余寿命预测新增 CALCE 数据集_calce数据集-CSDN博客

基于 VMD滚动分解+Transformer-GRU并行的锂电池剩余寿命预测模型

Informer 预测模型合集:新增特征重要性分析!_informer模型 最小二乘 气体 浓度 监测-CSDN博客

前言

本文基于某时间序列分类任务数据集,介绍一种融合快速傅里叶变换FFT,基于时频特征融合的FFT-CNN-BiGRU-Attention创新分类模型。

注意:本模型继续加入基于 Python 的时间序列分类任务模型合集中,之前购买的同学请及时更新

1 模型简介与创新点介绍

1.1 模型简介

● 数据集:时间序列分类任务数据集

● 环境框架:python 3.9  pytorch 2.1 及其以上版本均可运行

● 使用对象:入门学习,论文需求者

● 代码保证:代码注释详细、即拿即可跑通。

● 配套文件:详细的环境配置安装教程,模型、参数讲解文档

包括完整流程数据代码处理:

数据集制作、数据加载、模型定义、参数设置、模型训练、模型测试、预测可视化、模型评估

全网最低价,入门时间序列分类最佳教程,高性价比、高质量代码,大家可以了解一下:(所有全家桶模型会不断加入新的模型进行更新!后续会逐渐提高价格,越早购买性价比越高!!!一次购买,享受永久免费更新福利!

1.2 创新点介绍

(1)快速傅里叶变换(FFT):

FFT是一种快速计算离散傅里叶变换(DFT)的算法,用于将时间域信号转换到频域。这在时间序列分析中非常有用,因为频域特征可以揭示时间域中不明显的模式。在创新模型中,FFT用于提取时间序列的频域特征,这些特征与原始时间域特征结合使用,可以提高模型的分类性能。

(2)卷积神经网络(CNN):

在创新模型中,CNN用于提取经过FFT处理后的频域特征以及原始时间序列数据中的局部模式和特征。这些特征可以是短期的变化或某种局部一致性。

(3)双向门控循环单元(BiGRU):

GRU是一种循环神经网络(RNN)的变体,能够有效捕获序列数据中的长期依赖关系。双向GRU则通过从前向和后向两个方向处理数据,提高了对上下文的理解能力。BiGRU在这个模型中用于处理序列数据的时间依赖性,结合CNN提取的特征,能够更好地理解时间序列的动态行为。

(4)注意力机制:

注意力机制用于识别输入序列中最相关的部分,从而使模型更专注于有用的特征。这种机制在处理长序列数据时特别有用,可以帮助模型在大量信息中提取关键特征。在这个模型中,注意力机制帮助BiGRU聚焦于那些对分类任务最有影响的时间步或特征,从而提升模型的整体性能和解释能力。

FFT-CNN-BiGRU-Attention模型能够有效提取和利用时间序列数据的时域和频域特征,并通过深度学习的方法进行高效的分类任务。这种组合方法利用了每个模块的优势,使得模型在处理复杂时间序列数据时更加健壮和准确。

2 数据预处理

数据集格式为CSV文件,每一行代表一个时间序列样本,最后一列对应标签值,可以灵活替换数据集!

按照7:2:1划分训练集、验证集、测试集:

3 基于FFT-CNN-BiGRU-Attention的分类模型

3.1 定义FFT-CNN-BiGRU-Attention网络模型

3.2 设置参数,训练模型

50个epoch,准确率100%,FFT-CNN-BiGRU-Attention网络分类效果显著,模型能够充分提取时间序列数据的多尺度特征,收敛速度快,性能特别优越,效果明显。

4 模型评估与可视化

4.1 模型评估

4.2 分类可视化

(1)混淆矩阵

(2)分类标签可视化

(3)原始数据 t-SNE特征可视化

(4)模型训练后的 t-SNE特征可视化:

5 代码、数据整理如下:

点击下方卡片获取代码!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值