Spark,集群搭建-Standalone

集群搭建-Standalone

一、解压

在之前的学习中我们有了一个软件包  spark.3.1.2-bin-hadoop3.2.tgz (eg我的在 /opt/software目录下)把这个软件包解压到 /opt/module 下(也可以自己决定解压到哪里)。对应的命令是:

tar -zxvf spark-3.3.1-bin-hadoop3.tgz -C /opt/module

二、重命名

进入 /opt/module/ 把解压的内容右键重命名一下为 spark-standalone ,也可使用命令:

mv spark-3.1.1-bin-hadoop3.2/ spark-standalone

三、配置环境变量,更新spark路径

打开 /etc/profile.d/my_env.sh 加入如下代码

四、同步环境变量,并使用source命令让它生效

[root@hadoop100 ~]# xsync /etc/profile.d

五、修改配置文件

打开 /opt/module/spark-standalone/conf 中可看到修改文件内容前把 .template 后缀名都删掉再打开

workers.template文件 内容设置为三个主机名

hadoop100
hadoop101
hadoop102

spark-env.sh.template文件

export JAVA_HOME=/opt/module/jdk1.8.0_212
export HADOOP_HOME=/opt/module/hadoop-3.1.3
export SPARK_MASTER_IP=hadoop100
export SPARK_MASTER_PORT=7077
export SPARK_DIST_CLASSPATH=$(/opt/module/hadoop-3.1.3/bin/hadoop classpath)
export HADOOP_CONF_DIR=/opt/module/hadoop-3.1.3/etc/hadoop
export SPARK_YARN_USER_ENV="CLASSPATH=/opt/module/hadoop-3.1.3/etc/hadoop"
export YARN_CONF_DIR=/opt/module/hadoop-3.1.3/etc/hadoop

export SPARK_HISTORY_OPTS="
-Dspark.history.ui.port=18080
-Dspark.history.fs.logDirectory=hdfs://hadoop100:8020/directory
-Dspark.history.retainedApplications=30
"

spark-defaults.conf.template文件

spark.eventLog.enabled           true
spark.eventLog.dir               hdfs://hadoop100:8020/directory

spark.yarn.historyServer.address=hadoop100:18080
spark.history.ui.port=18080

六、启动SPARK集群。

进入到hadoop100机器,切换目录到/opt/module/spark-standalone/sbin下,运行命令 ./start-all.sh。

使用jps命令能看到我划线的就说明运行成功

七、查看启动结果

打开浏览器,输入hadoop100:8080。看到效果如下说明成功:

### 如何搭建配置 Spark Standalone 分布式集群 #### 准备工作 确保所有节点已经正确安装并配置好 Java 和 SSH 无密码登录。对于 Hadoop 的部分,只需要配置 HDFS 相关的服务即可[^2]。 #### 解压软件包 在每台机器上分别解压缩 JDK、Hadoop 及 Spark 安装文件: ```bash tar -zxvf jdk-8u241-linux-x64.tar.gz tar -zxvf hadoop-3.2.2.tar.gz tar -zxvf spark-3.2.0-bin-hadoop3.2.tgz ``` 完成上述操作之后,设置环境变量以便于后续使用这些工具[^5]。 #### 启动 HDFS 服务 由于通常情况下仍然希望利用 HDFS 进行数据存储,因此需要先启动 HDFS: ```bash # 切换至 hadoop 用户并进入 sbin 文件夹执行如下命令来启动 dfs 服务 $HADOOP_HOME/sbin/start-dfs.sh ``` 这一步骤保证了即使不依赖 YARN, 数据层面上依然能够正常运作。 #### 修改 Spark 配置文件 编辑 `conf/spark-env.sh` 来指定必要的环境参数,比如指向 HDFS 日志位置等信息: ```bash SPARK_HISTORY_OPTS="-Dspark.history.fs.logDirectory=hdfs://hdfs-cluster/spark-logs" ``` 此配置允许历史服务器读取位于远程 HDFS 上的日志记录[^4]。 #### 启动 Spark Master 和 Worker 节点 前往 Spark 主节点上的 `/sbin` 目录运行脚本来初始化整个集群: ```bash ./start-all.sh ``` 这条指令将会自动连接其他 worker 节点,并建立起完整的 Spark Standalone 集群架构[^3]。 通过以上步骤就可以成功构建起一个基于 Spark 自带资源管理器的独立分布式计算平台,在这个过程中并不涉及复杂的外部组件集成问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值