现有一个记作二维矩阵 frame
的珠宝架,其中 frame[i][j]
为该位置珠宝的价值。拿取珠宝的规则为:
- 只能从架子的左上角开始拿珠宝
- 每次可以移动到右侧或下侧的相邻位置
- 到达珠宝架子的右下角时,停止拿取
注意:珠宝的价值都是大于 0 的。除非这个架子上没有任何珠宝,比如 frame = [[0]]
。
示例 1:
输入:frame = [[1,3,1],[1,5,1],[4,2,1]]
输出:12
解释:路径 1→3→5→2→1 可以拿到最高价值的珠宝
动态规划:
int dfs(int ** memo,int** frame,int n,int m){
if(n < 0 || m < 0){
return 0;
}
if(memo[n][m] != -1){
return memo[n][m];
}else{
memo[n][m] = fmax(dfs(memo,frame,n-1,m),dfs(memo,frame,n,m-1)) + frame[n][m];
return memo[n][m];
}
}
int jewelleryValue(int** frame, int frameSize, int* frameColSize) {
int N = frameSize,M = frameColSize[0];
int** memo = (int**)malloc(N*sizeof(int*));
for(int i = 0;i < N;i++){
memo[i] = (int*)malloc(M*sizeof(int));
for(int j = 0;j < M;j++){
memo[i][j] = -1;
}
}
int result = dfs(memo,frame,N-1,M-1);
for(int i = 0;i < N;i++){
free(memo[i]);
}
free(memo);
return result;
}
如果有负数,下面这段代码就不适用了
if(n < 0 || m < 0){
return 0;
}
因为假如一路选过来都是负数,fmax()中一个是越界访问值0,另一个是负数,那么较大值是0,就出错了,应更改为:
if(n < 0 || m < 0){
return -INT_MAX;
}
当有负数时还有一种情况就是行列下标都为零时,此时dfs[0][0] = fmax(dfs[-1][0],dfs[0][-1]) + frame[0][0] ,一定是负无穷,又不对了。所以对这个点要单独讨论。
if(n ==0 && m==0){
return frame[0][0];
}
翻译成递推:
递归改成循环,~每一个参数代表一个循环~递归的边界改成f数组的初始值、
f [ i ][ j ]和dfs[ i ][ j ]的意义是一样的,都是表示从左上角到右下角的最大家之和。相应的递推公式也是一样的:
f[ i ][ j ] = max( f[ i ][ j - 1 ] ,f[ i - 1][ j ] ) + grid[ i ][ j ]。
但是当 i = 0或 j = 0时,等号右边会出现负数下标。也就是说没有状态能表示递推出界情况。
解决方法:在 f 数组的上边和左边各加一排,把原来的f[i] 改成 f[i+1],f[i−1] 改成 f[i],j 也同理。
修改后 f[i+1][j+1] 表示从左上角到 ( i , j ) 的最大价值和。此时 f[i][0] 和 f[0][j] 就可以表示出界的状态了。
相应的递推式为 f[i+1][j+1]=max(f[i+1][j],f[i][j+1])+grid[i][j]
class Solution {
public:
int jewelleryValue(vector<vector<int>> &grid) {
int m = grid.size(), n = grid[0].size(), f[m + 1][n + 1];
memset(f, 0, sizeof(f));
for (int i = 0; i < m; ++i)
for (int j = 0; j < n; ++j)
f[i + 1][j + 1] = max(f[i + 1][j], f[i][j + 1]) + grid[i][j];
//注意这里的grid[i][j],f[i + 1][j + 1]在grid数组中对应的位置就是这
return f[m][n];
}
};
初始值 f[i][0]=0,f[0][j]=0。
优化思路
由于 f[i+1] 只依赖 f[i],那么 f[i−1] 及其之前的数据就没用了。
例如计算 f[2] 的时候,数组 f[0] 不再使用了。
那么干脆把 f[2] 填到 f[0] 中。同理,把 f[3] 填到 f[1] 中,f[4] 填到 f[0] 中,……
因此可以只用两个长为 n+1 的数组滚动计算。
class Solution {
public:
int jewelleryValue(vector<vector<int>> &grid) {
int m = grid.size(), n = grid[0].size(), f[2][n + 1];
memset(f, 0, sizeof(f));
for (int i = 0; i < m; ++i)
for (int j = 0; j < n; ++j)
f[(i + 1) % 2][j + 1] =
max(f[(i + 1) % 2][j], f[i % 2][j + 1]) + grid[i][j];
//注意这里的grid[i][j],f[i + 1][j + 1]在grid数组中对应的位置就是这
return f[m % 2][n];
}
};
空间优化:方法二:
举个例子,在计算 f[1][1] 时,会用到 f[0][1],但是之后就不再用到了。
那么干脆把 f[1][1] 记到 f[0][1] 中,这样对于 f[1][2] 来说,它需要的数据就在 f[0][1] 和 f[0][2] 中。
f[1][2] 算完后也可以同样记到 f[0][2] 中。所以只需要一个长为 n+1 的一维数组就够了。
class Solution {
public:
int jewelleryValue(vector<vector<int>> &grid) {
int n = grid[0].size(), f[n + 1];
memset(f, 0, sizeof(f));
for (auto &row : grid)
for (int j = 0; j < n; ++j)
f[j + 1] = max(f[j], f[j + 1]) + row[j];
return f[n];
}
};
空间优化方案三:
直接用 grid[0] 当作 f 数组,可以做到 O(1) 额外空间。
由于 grid[0] 的长度只有 n,所以要按照
f[i][j]=max(f[i][j−1],f[i−1][j])+grid[i][j]
的方式来转移。
i=0 和 j=0 的情况要单独计算:
i=0 时,上式为 f[i][j]=f[i][j−1]+grid[i][j];用一个数组时,为 f[j]=f[j−1]+grid[0][j]=f[j−1]+f[j](grid[0] 就是 f 数组)。
j=0 时,上式为 f[i][j]=f[i−1][j]+grid[i][j];用一个数组时,为 f[0]=f[0]+grid[i][0]。
注:对比上下两份代码,你会发现长为 n+1 的数组写起来是更加简洁的,因为可以避免判断边界条件。
class Solution {
public:
int jewelleryValue(vector<vector<int>> &grid) {
int m = grid.size(), n = grid[0].size();
auto &f = grid[0];
for (int j = 1; j < n; ++j)
f[j] += f[j - 1];
for (int i = 1; i < m; ++i) {
f[0] += grid[i][0];
for (int j = 1; j < n; ++j)
f[j] = max(f[j - 1], f[j]) + grid[i][j];
}
return f[n - 1];
}
};