不需要万精油式ChatGpt,我们需要像钱学森式大师级的人工智能

ChatGpt是一款狡猾的软件,外交官式地对话。

大家想想外交官,在回答问题时,总是趋向于冷静、全面、完美,避免出现严重漏洞。

ChatGpt呈现给我们的,就像是外交官似的回答。

5cdbdcfb220041f6a517e892db04969d.jpeg

 

ChatGpt用于学习、娱乐没有问题,但要让它创新、创造目前还不可能。

我们不跟风,需要树立独树一帜的战略眼光。

 

最早起源于美国计算科学家约翰.麦卡锡,他在1956年提出人工智能是指创造具有智能的机器,特别是智能计算机程序的科学和工程。

不过,人工智能的定义并未定型,不同的研究人员对其认知各不同。

 

目前人工智能已经发展到第三代,使用的核心技术是2000年后开发的。

我们身边的实用案例有:美国苹果公司的语音助手 Siri ,亚马逊的语音助手 Alexa ,iRobot公司的扫地机器人 Roomba 等等。

使用的时候,比如:呼叫“Alexa ”,系统就会立刻启动;比如发出“导航去某地”或"关电视"等指令,系统会马上做出反应并执行指令。

 

这种通过设计程序让机器模拟人类学习的过程统称“机器学习”。

根据应用情况,机器学习又分为监督学习、非监督学习和强化学习。

 

监督学习是指根据事先给出的范例和标签让机器学习得出正确答案,可以用它对大数据进行高精度的预测和分类。

目前,已经应用在天气预报、图像识别等社会生活的许多领域。

 

非督学习则没有标签,需要从众多数据中找出具有“相似特征”的目标,并对它们进行分门别类,主要用在客层分析(锁定客户群)等方面。

强化学习则是通过在特定环境中不断试验和纠错找出最佳行动方案,常用于游戏软件设计。

 

2012年,默克公司数据竞赛的获胜团队使用的深度学习也是机器学习的一种。

其特点是模拟人类脑神经(神经细胞)网络进行信息处理,在图像、文字、语音识别方面有出色表现,可以说是当前人工智能的核心技术。

 

人脑神经元的结构非常独特,由一个大的胞体、延伸出的细长轴突以及突触(信息传输的突起)组成。

细胞体上有许多刺状结构的“树突”,它是接收其他神经元传来信号的入口,接收到的信号不断积累,超过一定阈值引起神经元兴奋,然后通过突触将信号传递给下一个神经元。

人脑内有超过1000亿个这样的神经元,它们之间相互作用形成一个分工明确的信息处理系统。

 

深度学习使用的人工神经网络,可以看成是一个模拟人脑神经网络的数学模型。

就像神经元是构成人类神经网络的基本单位一样,人工神经网络也由大量人工神经元构成。

信息不断传递到人工神经元,累积到一定程度后传给下一个人工神经元,无数个人工神经元连接起来形成一个神经网络。

 

人工神经网络中负责信息输入的叫"输入层",接收到信息传递给下一个人工神经元的叫“中间层”(或隐藏层),负责信息输出的称为“输出层”。

输入到输出之间的层数越多,机器学习的能力越强。

人工神经元之间的关联的强弱(权重)取决于学习内容。

开始学习前,权重是随机设置的,随着不断重复学习,权重变得更优化,这点和人脑很相似。

 

人工智能的发展可谓日新月异,技术多样性方面的各种挑战同样令人瞩目。

 

人工神经网络有很多类型,应用场景不同,学习内容不同从而选择不同。

我们缺什么,就专攻某领域的顶尖人工智能专家。

 

目前,我国很多关键技术被卡脖子。对于顶尖关键技术的研发,具有高风险、高投入、周期长等特点。

我们亟待需要解决在某个领域专精的人工智能技术,解决我们技术的短板,缩短技术差距。

我们不需要万金油式的人工智能而哗众取宠,我们需要像钱学森式顶尖专一的强大人工智能。我们拭目以待。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值