人工智能入门——机器学习

机器学习

机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。

专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能。

重新组织已有的知识结构使之不断改善自身的性能。

它是人工智能的核心,是使计算机具有智能的根本途径。

 

学习策略的分类

模拟人脑

一、符号学习:

 

模拟人脑的宏现心理级学习过程,以认知心理学原理为基础。

以符号数据为输入,以符号运算为方法。

用推理过程在图或状态空间中搜索,学习的目标为概念或规则等。

符号学习的典型方法有记忆学习、示例学习、演绎学习.类比学习、解释学习等。

 

二、神经网络学习(或连接学习):

 

模拟人脑的微观生理级学习过程,以脑和神经科学原理为基础。

以人工神经网络为函数结构模型,以数值数据为输人,以数值运算为方法。

用迭代过程在系数向量空间中搜索,学习的目标为函数。

典型的连接学习有权值修正学习、拓扑结构学习。

 

数学方法

统计机器学习是基于对数据的初步认识以及学习目的的分析。

选择合适的数学模型。拟定超参数,并输入样本数据,依据一定的策略。

运用合适的学习算法对模型进行训练,最后运用训练好的模型对数据进行分析预测。

 

统计机器学习三个要素:

 

一、模型(model):

 

模型在未进行训练前,其可能的参数是多个甚至无穷的。

故可能的模型也是多个甚至无穷的,这些模型构成的集合就是假设空间。

 

二、策略(strategy):

 

即从假设空间中挑选出参数最优的模型的准则。

模型的分类或预测结果与实际情况的误差(损失函数)越小,模型就越好。

那么策略就是误差最小。

 

三、算法(algorithm):

 

即从假设空间中挑选模型的方法(等同于求解最佳的模型参数)。

机器学习的参数求解通常都会转化为最优化问题,故学习算法通常是最优化算法。

例如最速梯度下降法、牛顿法以及拟牛顿法等。

 

基于学习方法的分类

(1) 归纳学习

 

符号归纳学习:典型的符号归纳学习有示例学习、决策树学习。

 

函数归纳学习(发现学习):典型的函数归纳学习有神经网络学习、示例学习、发现学习、统计学习。

 

(2) 演绎学习

 

(3) 类比学习:典型的类比学习有案例(范例)学习。

 

(4) 分析学习:典型的分析学习有解释学习、宏操作学习。 

 

基于学习方式的分类

(1) 监督学习(有导师学习):输入数据中有导师信号。

以概率函数、代数函数或人工神经网络为基函数模型。

采用迭代计算方法,学习结果为函数。 

 

(2) 无监督学习(无导师学习):输入数据中无导师信号,采用聚类方法,学习结果为类别。

典型的无导师学习有发现学习、聚类、竞争学习等。 

 

(3) 强化学习(增强学习):以环境反惯(奖/惩信号)作为输人。

以统计和动态规划技术为指导的一种学习方法。 

 

基于数据形式的分类

(1) 结构化学习:以结构化数据为输人,以数值计算或符号推演为方法。

典型的结构化学习有神经网络学习、统计学习、决策树学习、规则学习。 

 

(2) 非结构化学习:以非结构化数据为输人,典型的非结构化学习有类比学习案例学习、

解释学习、文本挖掘、图像挖掘、Web挖掘等。 

 

基于学习目标的分类

(1) 概念学习:学习的目标和结果为概念,或者说是为了获得概念的学习。

典型的概念学习主要有示例学习。

 

(2) 规则学习:学习的目标和结果为规则,或者为了获得规则的学习。

典型规则学习主要有决策树学习。

 

(3) 函数学习:学习的目标和结果为函数,或者说是为了获得函数的学习。

典型函数学习主要有神经网络学习。 

 

(4) 类别学习:学习的目标和结果为对象类,或者说是为了获得类别的学习。

典型类别学习主要有聚类分析。

 

(5) 贝叶斯网络学习:学习的目标和结果是贝叶斯网络,或者说是为了获得贝叶斯网络的一种学习。

其又可分为结构学习和多数学习。 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值