机器学习
机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。
专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能。
重新组织已有的知识结构使之不断改善自身的性能。
它是人工智能的核心,是使计算机具有智能的根本途径。
学习策略的分类
模拟人脑
一、符号学习:
模拟人脑的宏现心理级学习过程,以认知心理学原理为基础。
以符号数据为输入,以符号运算为方法。
用推理过程在图或状态空间中搜索,学习的目标为概念或规则等。
符号学习的典型方法有记忆学习、示例学习、演绎学习.类比学习、解释学习等。
二、神经网络学习(或连接学习):
模拟人脑的微观生理级学习过程,以脑和神经科学原理为基础。
以人工神经网络为函数结构模型,以数值数据为输人,以数值运算为方法。
用迭代过程在系数向量空间中搜索,学习的目标为函数。
典型的连接学习有权值修正学习、拓扑结构学习。
数学方法
统计机器学习是基于对数据的初步认识以及学习目的的分析。
选择合适的数学模型。拟定超参数,并输入样本数据,依据一定的策略。
运用合适的学习算法对模型进行训练,最后运用训练好的模型对数据进行分析预测。
统计机器学习三个要素:
一、模型(model):
模型在未进行训练前,其可能的参数是多个甚至无穷的。
故可能的模型也是多个甚至无穷的,这些模型构成的集合就是假设空间。
二、策略(strategy):
即从假设空间中挑选出参数最优的模型的准则。
模型的分类或预测结果与实际情况的误差(损失函数)越小,模型就越好。
那么策略就是误差最小。
三、算法(algorithm):
即从假设空间中挑选模型的方法(等同于求解最佳的模型参数)。
机器学习的参数求解通常都会转化为最优化问题,故学习算法通常是最优化算法。
例如最速梯度下降法、牛顿法以及拟牛顿法等。
基于学习方法的分类
(1) 归纳学习
符号归纳学习:典型的符号归纳学习有示例学习、决策树学习。
函数归纳学习(发现学习):典型的函数归纳学习有神经网络学习、示例学习、发现学习、统计学习。
(2) 演绎学习
(3) 类比学习:典型的类比学习有案例(范例)学习。
(4) 分析学习:典型的分析学习有解释学习、宏操作学习。
基于学习方式的分类
(1) 监督学习(有导师学习):输入数据中有导师信号。
以概率函数、代数函数或人工神经网络为基函数模型。
采用迭代计算方法,学习结果为函数。
(2) 无监督学习(无导师学习):输入数据中无导师信号,采用聚类方法,学习结果为类别。
典型的无导师学习有发现学习、聚类、竞争学习等。
(3) 强化学习(增强学习):以环境反惯(奖/惩信号)作为输人。
以统计和动态规划技术为指导的一种学习方法。
基于数据形式的分类
(1) 结构化学习:以结构化数据为输人,以数值计算或符号推演为方法。
典型的结构化学习有神经网络学习、统计学习、决策树学习、规则学习。
(2) 非结构化学习:以非结构化数据为输人,典型的非结构化学习有类比学习案例学习、
解释学习、文本挖掘、图像挖掘、Web挖掘等。
基于学习目标的分类
(1) 概念学习:学习的目标和结果为概念,或者说是为了获得概念的学习。
典型的概念学习主要有示例学习。
(2) 规则学习:学习的目标和结果为规则,或者为了获得规则的学习。
典型规则学习主要有决策树学习。
(3) 函数学习:学习的目标和结果为函数,或者说是为了获得函数的学习。
典型函数学习主要有神经网络学习。
(4) 类别学习:学习的目标和结果为对象类,或者说是为了获得类别的学习。
典型类别学习主要有聚类分析。
(5) 贝叶斯网络学习:学习的目标和结果是贝叶斯网络,或者说是为了获得贝叶斯网络的一种学习。
其又可分为结构学习和多数学习。