SQL:窗口函数(Window Functions)

目录

什么是窗口函数?

基本语法结构 

常见的窗口函数分类

1️⃣ 排名类函数

2️⃣ 聚合类函数(不影响原始行)

3️⃣ 值访问函数

窗口范围说明(ROWS / RANGE)


什么是窗口函数?

窗口函数是一类 SQL 函数,在不分组的情况下,可以对查询结果中的某一“窗口”范围内的数据进行计算。

不同于聚合函数(如 SUM, AVG),窗口函数不会压缩行,而是为每一行返回一个计算值。

基本语法结构 

<窗口函数>([参数]) OVER (
  [PARTITION BY 子句]
  [ORDER BY 子句]
  [ROWS 或 RANGE 子句]
)
  • PARTITION BY: 把数据分组,每组内独立执行函数(类似 GROUP BY,但不合并行)。

  • ORDER BY: 确定组内数据顺序。

  • ROWS BETWEEN: 精确控制窗口范围(例如:过去3行)。

举例:

SELECT 
  department_id,
  employee_id,
  salary,
  RANK() OVER (PARTITION BY department_id ORDER BY salary DESC) AS rank_in_dept
FROM employees;

 

常见的窗口函数分类

1️⃣ 排名类函数

函数描述
ROW_NUMBER()每一组数据中按顺序分配唯一行号
RANK()同分并列,跳跃排名(如:1,1,3)
DENSE_RANK()同分不跳(如:1,1,2)
NTILE(n)将结果分为 n 个桶,每行给出所属桶编号

1.ROW_NUMBER()

意义:按顺序为每行分配一个“唯一编号”。
名称:ROW_NUMBER = 行号。

语法示例:

ROW_NUMBER() OVER (PARTITION BY department_id ORDER BY salary DESC) AS row_num

用途:

  • 对每个部门中员工薪资进行唯一编号(常用于分页、去重等)

2.RANK()

意义:返回排名,相同值并列排名,后续名次跳跃。
名称:RANK = 排名。

语法示例:

RANK() OVER (PARTITION BY department_id ORDER BY salary DESC) AS rank
salaryRANK
10001
10001
9003

3.DENSE_RANK()

意义:与 RANK() 类似,但排名连续不跳跃。
名称:DENSE_RANK = 密集排名。

语法示例:

DENSE_RANK() OVER (PARTITION BY department_id ORDER BY salary DESC) AS dense_rank
salaryDENSE_RANK
10001
10001
9002

4. NTILE(n)

意义:将数据平均分成 n 个桶,每行返回桶编号。
名称:NTILE = "N Tile",即“分桶”。

语法示例:

NTILE(4) OVER (ORDER BY salary DESC) AS quartile

用途:

  • 按工资水平将员工划分为四个档次(四分位分析)


2️⃣ 聚合类函数(不影响原始行)

函数描述
SUM(), AVG(), MAX(), MIN()聚合函数 + 窗口:在窗口范围内计算
COUNT()窗口内的行数统计

5. SUM(expr)AVG(expr)MAX(expr)MIN(expr)

意义:在窗口内执行聚合计算,但不影响原始行展示。
名称:

  • SUM = 总和

  • AVG = 平均

  • MAX = 最大值

  • MIN = 最小值

语法示例:

SUM(salary) OVER (PARTITION BY department_id ORDER BY hire_date) AS running_total

用途:

  • 滚动汇总、组内对比等。

 


3️⃣ 值访问函数

函数描述
LAG(expr, n, default)返回当前行前第 n 行的值
LEAD(expr, n, default)返回当前行后第 n 行的值
FIRST_VALUE(expr)窗口中的第一个值
LAST_VALUE(expr)窗口中的最后一个值

6. LAG(expr, offset, default)

意义:返回当前行的前 N 行的值。
名称:LAG = 滞后。

语法示例:

LAG(salary, 1, 0) OVER (PARTITION BY department_id ORDER BY hire_date) AS prev_salary

用途:

  • 分析趋势、比较环比。

7. LEAD(expr, offset, default)

意义:返回当前行的后 N 行的值。
名称:LEAD = 领先。

语法示例:

LEAD(salary, 1, 0) OVER (PARTITION BY department_id ORDER BY hire_date) AS next_salary

用途:

  • 预测未来、构建时间序列对比。

 8. FIRST_VALUE(expr)

意义:返回窗口中按排序后第一行的值。
名称:FIRST_VALUE = 第一个值。

语法示例:

FIRST_VALUE(salary) OVER (PARTITION BY department_id ORDER BY hire_date) AS first_salary

9. LAST_VALUE(expr)

意义:返回窗口中最后一行的值。
名称:LAST_VALUE = 最后一个值。

注意: LAST_VALUE 需要配合 ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING 才能获取整个分区最后一行值。

LAST_VALUE(salary) OVER (
  PARTITION BY department_id 
  ORDER BY hire_date 
  ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
) AS last_salary

 


窗口范围说明(ROWS / RANGE)

ROWS基于物理行号

ROWS BETWEEN 2 PRECEDING AND CURRENT ROW

 RANGE基于值范围

RANGE BETWEEN INTERVAL 7 DAY PRECEDING AND CURRENT ROW

常见用途总结

场景推荐函数
排名ROW_NUMBER, RANK, DENSE_RANK
对比趋势LAG, LEAD, FIRST_VALUE, LAST_VALUE
滚动汇总SUM, AVG, COUNT + ROWS BETWEEN
分段统计NTILE
时间窗口RANGE BETWEEN
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值