计算机毕设选题【协同过滤】基于python豆瓣图书数据分析可视化推荐系统(完整系统源码+数据库+开发笔记+详细部署教程)

目录

一、项目背景

二、项目目标

三、项目功能

四、项目创新点

五、开发技术介绍

六、算法介绍

七、系统启动

 八、项目展示 

 十、开发笔记​编辑

十一、权威教学视频


源码获取方式在文章末尾

一、项目背景

       在当今的数字化时代,随着社交媒体和在线平台的发展,用户对书籍的需求不断增加,产生了海量的用户评价和书籍信息。利用大数据分析和推荐系统,能够帮助用户快速发现感兴趣的书籍,提升阅读体验。同时,协同过滤作为一种有效的推荐算法,可以根据用户的历史评分和行为模式,为用户提供个性化的书籍推荐。基于Python构建的豆瓣图书数据分析与推荐系统,将为用户提供精准的书籍推荐服务,提升平台的用户黏性和满意度。

二、项目目标

       项目旨在通过整合协同过滤算法,利用豆瓣图书的丰富数据,实现对用户阅读偏好的深入分析,并基于历史评分进行个性化书籍推荐。同时,结合数据可视化技术,使用户能够直观了解书籍推荐的趋势和热门图书,从而提升他们的阅读体验并做出更明智的选择。

三、项目功能

用户注册与登录:提供用户注册和登录功能。

个性化推荐系统:基于用户的历史评分和行为数据,运用协同过滤算法为用户推荐个性化书籍。

书籍搜索与浏览:用户可以根据书名、作者或类别搜索书籍,并查看详细信息和评分。

数据分析与可视化:对书籍评分、用户偏好等数据进行分析,并通过图表和可视化仪表板展示结果。

热门书籍推荐:根据整体用户评分和购买趋势,提供当前热门书籍的推荐。

用户反馈与评价:用户可以对推荐的书籍进行评价和反馈,系统会根据反馈不断优化推荐效果。

四、项目创新点

个性化协同过滤:结合用户的社交行为和历史评分,采用协同过滤算法,提升推荐的准确性和个性化程度

多维度可视化:通过创新的数据可视化技术,展示用户偏好、书籍趋势和市场需求,帮助用户更好地理解推荐内容。

学习机制:系统采用自适应算法,根据用户的反馈和行为变化自动调整推荐策略,以提高推荐的相关性和满意度。

社交推荐功能:引入社交网络元素,让用户可以看到朋友的阅读记录和评分,从而增强推荐的可信度和互动性。

跨平台支持:确保系统在不同设备上的良好体验,使用户随时随地获取个性化推荐。

五、开发技术介绍

前端框架:HTML,CSS,JAVASCRIPT,Echarts

后端:Flask

数据处理框架:Pandas

数据存储:Mysql

编程语言:Python/Scala

推荐算法:(1、ItemCF 2、UserCF)

数据可视化:Echarts

六、算法介绍

      协同过滤算法(Collaborative Filtering)是推荐系统中常用的一种技术,主要用于根据用户的历史行为(如购买记录、评分、浏览记录等)来推荐用户可能感兴趣的项目。协同过滤算法分为两类:基于用户的协同过滤(UserCF)和基于物品的协同过滤(ItemCF)。这里我们重点介绍基于物品的协同过滤(ItemCF)。

通过用户对物品的评分或交互记录,构建用户-物品矩阵,接着根据用户对物品的行为来计算物品之间的相似度。常用的相似度计算方法包括:

余弦相似度(Cosine Similarity)

皮尔逊相关系数(Pearson Correlation)

Jaccard相似系数

例如,物品X和物品Y的相似度可以通过以下公式计算

七、系统启动

Mysql和后端初始化:

安装完mysql后 导入sql文件,打开navicat或其他数据库可视化软件

创建连接

链接名随意 密码就是设置的root (一般为root)

b40d4d885cb74e95b28c0fc5e27231b0.png

双击连接

0c5b97f646fa468a9ea59c16415c3f0c.png

 右键连接创建数据库

91adb471c3d648abb10340bc7c5c42ba.png

 先双击再右键dbbook数据库点击“运行sql文件”导入即可a9b361315255413db3dafbeb177635af.png

 导入项目:

b578712567b94add93491cd44fecc519.png

 找到我们下载的文件的路径

a001e6e31be1412489b339313e2b417b.png

 打开后打开设置setting创建虚拟解释器

360365b922b944ab8384504d15701b58.png

进入虚拟已安装依赖

17ef3ba06ac3457bb7fa3efd72910896.png

 添加解释器 show all 显示全部a0e421d9463a410ebca0365fa288d7cb.png

 f5317155988c44af9143498630d1438d.png

选择你安装的python的路径作为继承解释器,如果已有可以删除,重新新建虚拟解释去

d95b41fc4dc54b87a57ab21d4a60e015.png

 把我们的项目依赖放在项目文件夹下面,或在我们的项目文件下找到requirements.txt790193ec635c49eb9f336ac57ba3b6f6.png

进入项目文件夹——>进入项目目录下的venv虚拟解释器文件夹——>Scripts

终端输入cmd回车

936ffaa528df4973a87381861e0b7188.png

 activate.bat

pip install -r ../../requirements.txt34464ec51a274583a2e93bff03069b89.png

依赖引入完成

创建主函数启动程序 打开pycharm (如果已有项目同名启动程序可直接启动)

若无则Edit 编辑配置64ac7ab0f5194d36b8e86a14fa692a06.png

4e0c2d3302444652a2b793783391dbec.png

 选择我们刚刚安装的虚拟解释器

5ffa5d746fd0412c8db6f87219d3eba0.png

 创建完后启动服务器:f7899d90fa4d4560a795626dc3a091ef.png

 启动成功http://127.0.0.1:8000/访问网页c9e86b292619428785628a2ff33c3656.png

 八、项目展示 

登录6e48f27c510840f7ae2b463e02bfa177.png

 注册a91160122e25481a9cdbafdecfdace1b.png

 首页7680dc6e26e24afb9b84b8d3bfce668c.png

 表单表格ec8057ca5a054a1ea3fa77a616b0f664.png

 个人信息9bc5ed9f40bd4315933f3d41e505e1b6.png

 数据统计页367bc18567b54b89b37cd5fad7fb222b.png

 种类分析b80e825b2a9645f69deb51aa588f07a1.png

 书本信息分析48f8925a1fbc4c49ab1aef149b0e80cd.png

 评论分析1f0daa9943834aae9f160fc151de50ed.png

 年份分析b0c5e087125245abade89ced614353f7.png

 书本词云图bf72ac279c6d4f2585c0d1eff63feb29.png

 书本简介词云图1d74850e8c1745d695236b51dde5c804.png

 书本推荐8abc341010da4c60bbd82ddb6940e51f.png

 十、开发笔记d0aff748ae744c93bdd0cf3e688feaa8.png

1a72b416ad234100a05d41c382dc3b6e.png

十一、权威教学视频

【协同过滤】基于python豆瓣图书分析可视化系统推荐系统——计算机毕业设计!实战全集教学

源码文档等资料获取方式

需要全部项目资料(完整系统源码等资料),主页+即可

需要全部项目资料(完整系统源码等资料),主页+即可

需要全部项目资料(完整系统源码等资料),主页+即可

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值