19.最大公约数与最小公倍数

最大公约数(Greatest Common Divisor,GCD)和最小公倍数(Least Common Multiple,LCM)是数论中的两个基本概念,它们描述了两个或多个整数的共同性质。

1. **最大公约数(GCD)**:
   - 最大公约数是两个或多个整数共有约数中最大的一个。
   - 例如,8和12的最大公约数是4,因为4是8和12都能整除的最大数。
   - 计算两个数的最大公约数的一个常用方法是欧几里得算法。

2. **最小公倍数(LCM)**:
   - 最小公倍数是两个或多个整数的公倍数中最小的一个。
   - 例如,8和12的最小公倍数是24,因为24是8和12的公倍数中最小的一个。
   - 计算两个数的最小公倍数的一个方法是将两个数相乘,然后除以它们的最大公约数。

最大公约数和最小公倍数之间有一个重要的关系,即两个数的乘积等于它们的最大公约数和最小公倍数的乘积,用数学公式表示就是:

其中, a 和  b 是任意两个正整数。

这个关系在解决一些数学问题时非常有用,比如在简化分数、解决整数分配问题等方面。
 

问题描述

编写 C 语言程序,从键盘读入2个数,计算出他们的最大公约数与最小公倍数

输入格式

一共2行,两个数字

输出格式

输出一行

#include<stdio.h>
int main(){
	int m,n,i,j,k,g,t;
	printf("请输入第一个正整数:\n");
	scanf("%d",&m);
	printf("请输入第二个正整数:\n");
	scanf("%d",&n);
	if(m<=n){
		k=m;
		m=n;
		n=k;
	}
	for(i=n;i>=0;i--){
		if((m%i==0)&&(n%i==0)){
			g=i;
			break;
		}
	}
	for(j=m;;j++){
		if((j%m==0)&&(j%n==0)){
			t=j;
			break;
		} 
	}
	printf("最大公约数:%d,最小公倍数:%d",g,t);
}

运行结果如下;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值