基于Python的A*算法解决八数码问题

目录

一、问题描述

二、涉及算法

三、实现步骤

1.定义状态结点的类

 2.定义曼哈顿距离计算函数

3.预留占位函数

4.生成子结点函数

5.定义输出路径函数

6.定义A*算法

7.读取数据作为原始状态

8.定义主函数查看结果

四、运行结果

五、完整代码


一、问题描述

八数码问题是人工智能领域一个经典的问题。也是我们所熟悉的最简单的3×3数字华容道游戏:在一个3×3的九宫格棋盘上,摆有8个正方形方块,每一个方块都标有1~8中的某一个数字。棋盘中留有一个空格,要求按照每次只能将与空格相邻的方块与空格交换的原则,将任意摆放的数码盘(初始状态)逐步摆成某种给定的数码盘的排列方式(目标状态)。

二、涉及算法

启发式搜索又称为有信息搜索,是利用问题拥有启发信息引导搜索,以达到减小搜索范围、降低问题复杂度的目的。在启发式搜索过程中,要对Open表进行排序,这就要有一种方法来计算待扩展结点有希望通向目标结点的不同程度,人们总是希望找到最有可能通向目标结点的待扩展结点优先扩展。一种最常用的方法是定义一个评价函数对各个结点进行计算,其目的就是用来估算出“有希望”的结点。用f来标记评价函数,用f(n)表示结点n的评价函数值,并用f来排列等待扩展的结点,然后选择具有最小f值的结点作为下一个要扩展的结点。

A*算法是一种有序搜索算法,其特点在于对评价函数的定义上。这个评估函数f使得在任意结点上其函数值f(n)能估算出结点S到结点n的最小代价路径的代价与从节点n到某一目标节点的最小代价路径的代价的总和,也就是说f(n)是约束通过结点n的一条最小代价路径的代价的估计。
算法具体内容见文献:

https://wenku.baidu.com/view/4a80a40fa2161479171128de?_wkts_=1713600420821

三、实现步骤

在运行前,需要提前准备好infile.txt文件,第一行规定N的大小,即棋盘的大小,第二行则放置起始状态棋盘中的数字排列,从上往下,从左往右一次排成一列,空格置为0。

1.定义状态结点的类

定义一个State类,主要用于表示搜索过程中的状态结点,包括结点的代价和状态信息,以及结点之间的关系。

属性:

gn:从起始结点到当前结点的实际代价。

hn:从当前结点到目标结点的估计代价(启发式函数)。

fn:综合代价,即gn+hn。

child:子结点列表,存储从当前结点可以到达的所有子结点。

par:父结点,指向生成当前结点的父结点。

state:当前结点的状态矩阵。

hash_value:当前结点状态矩阵的哈希值,用于在查找表中快速查找。

方法:

__lt__:小于运算符重载,用于结点比较。

__eq__:等于运算符重载,用于结点比较。

__ne__:不等于运算符重载,用于结点比较。

class State(object):
    def __init__(self, gn=0, hn=0, state=None, hash_value=None, par=None):
        self.gn = gn
        self.hn = hn
        self.fn = self.gn + self.hn
        self.child = []
        self.par = par
        self.state = state
        self.hash_value = hash_value

    def __lt__(self, other):
        return self.fn < other.fn

    def __eq__(self, other):
        return self.hash_value == other.hash_value

    def __ne__(self, other):
        return not self.__eq__(other)

 2.定义曼哈顿距离计算函数

计算两个状态结点之间的曼哈顿距离,作为启发式函数的一部分,用于评估当前结点到目标结点的估计代价。

def manhattan_dis(cur_node, end_node):  # 定义一个名为manhattan_dis的函数,接受两个参数cur_node(当前结点)和end_node(目标结点)
    # 获取当前结点和目标结点的状态矩阵
    cur_state = cur_node.state
    end_state = end_node.state
    dist = 0
    N = len(cur_state)  # 获取状态矩阵的大小,假设为N
    # 遍历状态矩阵中的每个位置
    for i in range(N):
        for j in range(N):
            # 如果当前结点的值与目标结点的值相等,则跳过当前位置,因为这个位置已经在目标状态中
            if cur_state[i][j] == end_state[i][j]:
                continue
            num = cur_state[i][j]  # 获取当前结点在状态矩阵中的值
            # 如果当前结点的值为0(空白格),则将目标位置设置为状态矩阵的右下角
            if num == 0:
                x = N - 1
                y = N - 1
            # 如果当前结点的值不为0,则根据当前结点的值计算其目标位置,假设目标位置为(x,y)
            else:
                x = num / N
                y = num - N * x - 1
            # 计算当前结点与目标位置之间的曼哈顿距离,并累加到总距离中
            dist += (abs(x - i) + abs(y - j))
    # 返回计算得到的曼哈顿距离作为当前结点到目标结点的估计代价
    return dist

3.预留占位函数

test_fn是一个占位函数,接受当前结点和目标结点作为参数。目前这个函数没有实际的功能。

def test_fn(cur_node, end_node):
    return 0

4.生成子结点函数

创建generate_child函数,接受当前结点cur_node、目标结点end_node、哈希集合hash_set、OPEN表open_table和距离函数dis_fn作为参数。实现了在当前结点基础上生成可行的子结点,并考虑了重复状态的处理,是A*算法中搜索过程的重要一步。

def generate_child(cur_node, end_node, hash_set, open_table, dis_fn):
    # 如果当前结点就是目标结点,则直接将目标结点假如OPEN表,并返回,表示已经找到了解
    if cur_node == end_node:
        heapq.heappush(open_table, end_node)
        return
    # 获取当前结点状态矩阵的大小
    num = len(cur_node.state)
    # 遍历当前结点状态矩阵的每一个位置
    for i in range(0, num):
        for j in range(0, num):
            # 如果当前位置不是空格,则跳过,因为空格是可以移动的位置
            if cur_node.state[i][j] != 0:
                continue
            # 遍历当前位置的四个邻居位置,即上下左右四个方向
            for d in direction:
                x = i + d[0]
                y = j + d[1]
                if x < 0 or x >= num or y < 0 or y >=num:
                    continue
                # 记录生成的结点数量
                global SUM_NODE_NUM
                SUM_NODE_NUM += 1
                # 交换空格和邻居位置的数字,生成一个新的状态矩阵
                state = copy.deepcopy(cur_node.state)
                state[i][j], state[x][y] = state[x][y], state[i][j]
                # 计算新状态矩阵的哈希值,并检查是否已经在哈希集合中存在,如果存在则表示已经生成过相同的状态,跳过
                h = hash(str(state))
                if h in hash_set:
                    continue
                # 将新状态的哈希值添加到哈希集合中,计算新状态结点的gn(从起始结点到当前结点的代价)和hn(当前结点到目标结点的估计代价)
                hash_set.add(h)
                gn = cur_node.gn + 1
                hn = dis_fn(cur_node, end_node)
                # 创建新的状态结点对象,并将其加入到当前结点的子结点列表中,并将其加入到OPEN表中。
                node = State(gn, hn, state, h, cur_node)
                cur_node.child.append(node)
                heapq.heappush(open_table, node)

5.定义输出路径函数

定义了一个名为print_path的函数,接受一个参数node,表示目标结点。通过回溯父结点的方式,从目标结点一直回溯到起始结点,并将沿途经过的状态矩阵打印出来,以展示搜索路径。

def print_path(node):
    # 获取从起始结点到目标结点的路径长度,即目标结点的实际代价
    num = node.gn
    
    # 定义了一个内部函数show_block,用于打印状态矩阵
    def show_block(block):
        print("---------------")
        for b in block:
            print(b)
    # 创建一个栈,用于存储路径中经过的结点
    stack = []
    # 从目标结点开始,沿着父结点指针一直回溯到起始结点,并将沿途经过的状态矩阵入栈
    while node.par is not None:
        stack.append(node.state)
        node = node.par
    stack.append(node.state)
    # 从栈中依次取出状态矩阵,并打印出来
    while len(stack) != 0:
        t = stack.pop()
        show_block(t)
    # 返回路径长度
    return num

6.定义A*算法

定义A_start函数,接受起始状态start、目标状态end、距离函数distance_fn、生成子结点函数generate_child_fn和可选的时间限制time_limit作为参数。实现了A*算法的整个搜索过程,包括结点的扩展、路径的搜索和时间限制的处理。

def A_start(start, end, distance_fn, generate_child_fn, time_limit=10):
    # 创建起始状态结点和目标状态结点对象,并分别计算其哈希值
    root = State(0, 0, start, hash(str(BLOCK)), None)
    end_state = State(0, 0, end, hash(str(GOAL)), None)
    # 检查起始状态是否就是目标状态,如果是,则直接输出提示信息
    if root == end_state:
        print("start == end !")
    # 将起始状态结点加入到OPEN表中,并对OPEN表进行堆化操作
    OPEN.append(root)
    heapq.heapify(OPEN)
    # 创建一个哈希集合,用于存储已经生成的状态结点的哈希值,并将起始状态结点的哈希值添加到集合中
    node_hash_set = set()
    node_hash_set.add(root.hash_value)
    # 记录算法开始的时间
    start_time = datetime.datetime.now()
    # 进入主循环,直到OPEN表为空(搜索完成)或达到时间限制
    while len(OPEN) != 0:
        top = heapq.heappop(OPEN)
        # 如果当前结点就是目标状态结点,则直接输出路径
        if top == end_state:
            return print_path(top)
        # 产生孩子节点,孩子节点加入OPEN表
        generate_child_fn(cur_node=top, end_node=end_state, hash_set=node_hash_set,
                          open_table=OPEN, dis_fn=distance_fn)
        # 记录当前时间
        cur_time = datetime.datetime.now()
        # 超时处理,如果运行时间超过了设定的时间限制,则输出超时提示信息并返回
        if (cur_time - start_time).seconds > time_limit:
            print("Time running out, break !")
            print("Number of nodes:", SUM_NODE_NUM)
            return -1
    # 如果循环结束时OPEN表为空,则表示没有找到路径,输出提示信息并返回-1
    print("No road !")  # 没有路径
    return -1

7.读取数据作为原始状态

定义read_block函数,接受三个参数block(状态矩阵列表)、line(输入的一行数据)、N(状态矩阵的大小)。将文本数据解析为状态矩阵的形式,并存储在列表中,为后续的状态表示和求解提供原始数据。

def read_block(block, line, N):
    # 使用正则表达式提取输入行中的数字数据,并存储在列表res中
    pattern = re.compile(r'\d+')  # 正则表达式提取数据
    res = re.findall(pattern, line)
    # 初始化计数变量t和临时列表tmp
    t = 0
    tmp = []
    # 遍历提取的数字数据,将其转换为整数,并添加到临时列表tmp中
    for i in res:
        t += 1
        tmp.append(int(i))
        # 当计数变量t达到状态矩阵的大小N时,表示当前行数据处理完毕,将临时表添加到状态矩阵列表中,并清空临时表
        if t == N:
            t = 0
            block.append(tmp)
            tmp = []

8.定义主函数查看结果

通过主函数if __name__ == 'main'读取输入数据、调用A*算法求解八数码问题,并输出求解结果的相关信息。

if __name__ == '__main__':
    # 尝试打开infile.txt文件,如果文件打开失败,则输出错误信息并退出程序
    try:
        file = open('infile.txt', "r")
    except IOError:
        print("can not open file infile.txt !")
        exit(1)
    # 打开名为infile.txt文件,并将文件对象赋值给变量f
    f = open("infile.txt")
    # 读取文件的第一行,获取棋盘的大小NUMBER
    NUMBER = int(f.readline()[-2])
    # 根据棋盘大小生成目标状态,并将目标状态存储在列表GOAL中
    n = 1
    for i in range(NUMBER):
        l = []
        for j in range(NUMBER):
            l.append(n)
            n += 1
        GOAL.append(l)
    GOAL[NUMBER - 1][NUMBER - 1] = 0
    # 逐行读取文件中的数据
    for line in f:  # 读取每一行数据
        # 在每次处理新的输入数据之前,需要清空OPEN表和BLOCK表
        OPEN = []
        BLOCK = []
        # 调用读取数据的函数,将当前行的数据解析并存储为状态矩阵
        read_block(BLOCK, line, NUMBER)
        # 初始化生成的结点数量为0
        SUM_NODE_NUM = 0
        # 记录算法开始的时间
        start_t = datetime.datetime.now()
        # 这里添加5秒超时处理,可以根据实际情况选择启发函数
        # 将求解路径长度存储在length中
        length = A_start(BLOCK, GOAL, manhattan_dis, generate_child, time_limit=10)
        # 记录算法结束时间
        end_t = datetime.datetime.now()
        # 如果找到了路径,则输出路径长度、算法执行时间和生成的结点数量
        if length != -1:
            print("length =", length)
            print("time =", (end_t - start_t).total_seconds(), "s")
            print("Nodes =", SUM_NODE_NUM)

四、运行结果

A*算法在解决八数码问题中表现出较高的准确性。通过启发式函数曼哈顿距离的计算,能够较准确的评估当前结点到目标节点的代价,并在搜索过程中选择代价最小的路径。通过和实际路径长度的比较,可以验证算法的准确性。

同时,A*算法在搜索过程中充分利用了启发式函数的估计值,能够更优先的扩展可能更接近目标的结点,从而提高搜索效率,但是,在某些复杂的情况下,仍可能耗费较长时间或无法找到解,这取决于问题的复杂度和启发式函数的选择。

以下结果显示的是从初始状态转变成目标状态的一个具体过程。

---------------
[7, 2, 6]
[8, 1, 4]
[3, 5, 0]
---------------
[7, 2, 6]
[8, 1, 0]
[3, 5, 4]
---------------
[7, 2, 0]
[8, 1, 6]
[3, 5, 4]
---------------
[7, 0, 2]
[8, 1, 6]
[3, 5, 4]
---------------
[7, 1, 2]
[8, 0, 6]
[3, 5, 4]
---------------
[7, 1, 2]
[8, 5, 6]
[3, 0, 4]
---------------
[7, 1, 2]
[8, 5, 6]
[0, 3, 4]
---------------
[7, 1, 2]
[0, 5, 6]
[8, 3, 4]
---------------
[0, 1, 2]
[7, 5, 6]
[8, 3, 4]
---------------
[1, 0, 2]
[7, 5, 6]
[8, 3, 4]
---------------
[1, 5, 2]
[7, 0, 6]
[8, 3, 4]
---------------
[1, 5, 2]
[7, 3, 6]
[8, 0, 4]
---------------
[1, 5, 2]
[7, 3, 6]
[8, 4, 0]
---------------
[1, 5, 2]
[7, 3, 0]
[8, 4, 6]
---------------
[1, 5, 2]
[7, 0, 3]
[8, 4, 6]
---------------
[1, 5, 2]
[7, 4, 3]
[8, 0, 6]
---------------
[1, 5, 2]
[7, 4, 3]
[0, 8, 6]
---------------
[1, 5, 2]
[0, 4, 3]
[7, 8, 6]
---------------
[1, 5, 2]
[4, 0, 3]
[7, 8, 6]
---------------
[1, 0, 2]
[4, 5, 3]
[7, 8, 6]
---------------
[1, 2, 0]
[4, 5, 3]
[7, 8, 6]
---------------
[1, 2, 3]
[4, 5, 0]
[7, 8, 6]
---------------
[1, 2, 3]
[4, 5, 6]
[7, 8, 0]
length = 22
time = 0.09839 s
Nodes = 8274

进程已结束,退出代码为 0

五、完整代码

import heapq
import copy
import re
import datetime

BLOCK = []
GOAL = []
direction = [[0, 1], [0, -1], [1, 0], [-1, 0]]
OPEN = []
SUM_NODE_NUM = 0


class State(object):
    def __init__(self, gn=0, hn=0, state=None, hash_value=None, par=None):
        self.gn = gn
        self.hn = hn
        self.fn = self.gn + self.hn
        self.child = []
        self.par = par
        self.state = state
        self.hash_value = hash_value

    def __lt__(self, other):
        return self.fn < other.fn

    def __eq__(self, other):
        return self.hash_value == other.hash_value

    def __ne__(self, other):
        return not self.__eq__(other)


def manhattan_dis(cur_node, end_node):
    cur_state = cur_node.state
    end_state = end_node.state
    dist = 0
    N = len(cur_state)
    for i in range(N):
        for j in range(N):
            if cur_state[i][j] == end_state[i][j]:
                continue
            num = cur_state[i][j]
            if num == 0:
                x = N - 1
                y = N - 1
            else:
                x = num / N
                y = num - N * x - 1
            dist += (abs(x - i) + abs(y - j))
    return dist


def test_fn(cur_node, end_node):
    return 0


def generate_child(cur_node, end_node, hash_set, open_table, dis_fn):
    if cur_node == end_node:
        heapq.heappush(open_table, end_node)
        return
    num = len(cur_node.state)
    for i in range(0, num):
        for j in range(0, num):
            if cur_node.state[i][j] != 0:
                continue
            for d in direction:
                x = i + d[0]
                y = j + d[1]
                if x < 0 or x >= num or y < 0 or y >= num:
                    continue
                global SUM_NODE_NUM
                SUM_NODE_NUM += 1
                state = copy.deepcopy(cur_node.state)
                state[i][j], state[x][y] = state[x][y], state[i][j]
                h = hash(str(state))
                if h in hash_set:
                    continue
                hash_set.add(h)
                gn = cur_node.gn + 1
                hn = dis_fn(cur_node, end_node)
                node = State(gn, hn, state, h, cur_node)
                cur_node.child.append(node)
                heapq.heappush(open_table, node)


def print_path(node):
    num = node.gn

    def show_block(block):
        print("---------------")
        for b in block:
            print(b)

    stack = []
    while node.par is not None:
        stack.append(node.state)
        node = node.par
    stack.append(node.state)
    while len(stack) != 0:
        t = stack.pop()
        show_block(t)
    return num


def A_start(start, end, distance_fn, generate_child_fn, time_limit=10):
    root = State(0, 0, start, hash(str(BLOCK)), None)
    end_state = State(0, 0, end, hash(str(GOAL)), None)
    if root == end_state:
        print("start == end !")
    OPEN.append(root)
    heapq.heapify(OPEN)
    node_hash_set = set()
    node_hash_set.add(root.hash_value)
    start_time = datetime.datetime.now()
    while len(OPEN) != 0:
        top = heapq.heappop(OPEN)
        if top == end_state:
            return print_path(top)
        generate_child_fn(cur_node=top, end_node=end_state, hash_set=node_hash_set,
                          open_table=OPEN, dis_fn=distance_fn)
        cur_time = datetime.datetime.now()
        if (cur_time - start_time).seconds > time_limit:
            print("Time running out, break !")
            print("Number of nodes:", SUM_NODE_NUM)
            return -1
    print("No road !")
    return -1


def read_block(block, line, N):
    pattern = re.compile(r'\d+')
    res = re.findall(pattern, line)
    t = 0
    tmp = []
    for i in res:
        t += 1
        tmp.append(int(i))
        if t == N:
            t = 0
            block.append(tmp)
            tmp = []


if __name__ == '__main__':
    try:
        file = open('infile.txt', "r")
    except IOError:
        print("can not open file infile.txt !")
        exit(1)
    f = open("infile.txt")
    NUMBER = int(f.readline()[-2])
    n = 1
    for i in range(NUMBER):
        l = []
        for j in range(NUMBER):
            l.append(n)
            n += 1
        GOAL.append(l)
    GOAL[NUMBER - 1][NUMBER - 1] = 0
    for line in f:
        OPEN = []
        BLOCK = []
        read_block(BLOCK, line, NUMBER)
        SUM_NODE_NUM = 0
        start_t = datetime.datetime.now()
        length = A_start(BLOCK, GOAL, manhattan_dis, generate_child, time_limit=10)
        end_t = datetime.datetime.now()
        if length != -1:
            print("length =", length)
            print("time =", (end_t - start_t).total_seconds(), "s")
            print("Nodes =", SUM_NODE_NUM)
A*算法求解八数码问题 1、A*算法基本思想: 1)建立个队列,计算初始结点的估价函数f,并将初始结点入队,设置队列头和尾指针。 2)取出队列头(队列头指针所指)的结点,如果该结点是目标结点,则输出路径,程序结束。否则对结点进行扩展。 3)检查扩展出的新结点是否与队列中的结点重复,若与不能再扩展的结点重复(位于队列头指针之前),则将它抛弃;若新结点与待扩展的结点重复(位于队列头指针之后),则比较两个结点的估价函数中g的大小,保留较小g值的结点。跳至第五步。 4)如果扩展出的新结点与队列中的结点不重复,则按照它的估价函数f大小将它插入队列中的头结点后待扩展结点的适当位置,使它们按从小到大的顺序排列,最后更新队列尾指针。 5)如果队列头的结点还可以扩展,直接返回第二步。否则将队列头指针指向下结点,再返回第二步。 2、程序运行基本环境: 源程序所使用编程语言:C# 编译环境:VS2010,.net framework 4.0 运行环境:.net framework 4.0 3、程序运行界面 可使用程序中的test来随机生成源状态与目标状态 此停顿过程中按Enter即可使程序开始运行W(n)部分; 此停顿部分按Enter后程序退出; 4、无解问题运行情况 这里源程序中是先计算源状态与目标状态的逆序对的奇偶性是否致来判断是否有解的。下面是无解时的运行画面: 输入无解的组源状态到目标状态,例如: 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 8 7 0 运行画面如下: 5、性能比较 对于任给定可解初始状态,状态空间有9!/2=181440个状态;当采用不在位棋子数作为启发函数时,深度超过20时,算法求解速度较慢; 其中启发函数P(n)与W(n)的含义如下: P(n): 任意节点与目标结点之间的距离; W(n): 不在位的将牌数; 源状态 目标状态 P(n) 生成节点数 W(n) 生成节点数 P(n) 扩展节点数 W(n) 扩展节点数 2 8 3 1 6 4 7 0 5 1 2 3 8 0 4 7 6 5 11 13 5 6 1 2 3 8 0 4 7 6 5 0 1 3 8 2 4 7 6 5 6 6 2 2 4 8 2 5 1 6 7 0 3 7 4 2 8 5 6 1 3 0 41 79 22 46 6 2 5 8 7 0 3 1 4 0 3 6 7 1 8 4 5 2 359 10530 220 6769 7 6 3 1 0 4 8 5 2 2 8 7 1 3 4 6 5 0 486 8138 312 5295 下图是解决随机生成的100中状态中,P(n)生成函数的生成节点与扩展节点统计图: 由上图可知,P(n)作为启发函数,平均生成节点数大约在1000左右,平均扩展节点数大约在600左右; 下图是解决随机生成的100中状态中,W(n)生成函数的生成节点与扩展节点统计图: 由上图可知,W (n)作为启发函数,平均生成节点数大约在15000左右,是P(n)作为启发函数时的平均生成节点的15倍;W (n)作为启发函数,平均扩展节点数大约在10000左右,是P(n)作为启发函数时的平均扩展节点的15倍; 下图是解决随机生成的100中状态中,两个生成函数的生成节点与扩展节点统计图: 由上述图表可以看到,将P(n)作为启发函数比将W(n)作为启发函数时,生成节点数与扩展节点数更稳定,相比较来说,采用P(n)作为启发函数的性能比采用W(n)作为启发函数的性能好。 6、源代码说明 1)AStar-EightDigital-Statistics文件夹:用来随机生成100个状态,并对这100个状态分别用P(n)与W(n)分别作为启发函数算出生成节点以及扩展节点,以供生成图表使用;运行界面如下: 2)Test文件夹:将0-8这9个数字随机排序,用来随机生成源状态以及目标状态的;运行界面如下: 3)AStar-EightDigital文件夹:输入源状态和目标状态,程序搜索出P(n)与W(n)分别作为启发函数时的生成节点数以及扩展节点数,并给出从源状态到目标状态的移动步骤;运行界面如下: 提高了运行速度的几处编码思想: 1、 在维护open以及close列表的同时,也维护个类型为hashtable的open以及close列表,主要用来提高判断当前节点是否在open列表以及close列表中出现时的性能; 2、 对于每个状态,按照从左到右,从上到下,依次将数字拼接起来,形成个唯标识identify,通过该标识,可以直接判断两个状态是否是同个状态,而不需要循环判断每个位置上的数字是否相等 3、 在生成每个状态的唯标识identify时,同时计算了该状态的空格所在位置,通过空格所在位置,可以直接判断能否进行上移、下移、左移、右移等动作; 4、 只计算初始节点的h值,其它生成的节点的h值是根据当前状态的h值、移动的操作等计算后得出的,规则如下: a) 采用W(n)这种方式,不在位置的将牌数,共有以下3中情况: i. 该数字原不在最终位置上,移动后,在其最终位置上 这种情况下,生成的子节点的h值= 父节点的h值-1 ii. 该数字原在最终位置上,移动后,不在其最终位置上 这种情况下,生成的子节点的h值= 父节点的h值 +1 iii. 该数字原不在最终位置上,移动后,还是不在其最终位置上 这种情况下,生成的子节点的h值= 父节点的h值 iv. 该数字原在最终位置上,移动后,还在其最终位置 这种情况不存在 b) 采用P(n)这种方式,节点与目标距离,可通过下面3步完成 i. 首先计算在原位置时,与目标位置的距离,命名为Distance1 ii. 移动后,计算当前位置与目标位置的距离,命名为Distance2 iii. 计算子节点的h值: 子节点的h值 = 父节点的h值- Distance1+ Distance2 5、 在任意状态中的每个数字和目标状态中同数字的相对距离就有9*9种,可以先将这些相对距离算出来,用个矩阵存储,这样只要知道两个状态中同个数字的位置,就可查出它们的相对距离,也就是该数字的偏移距离;例如在个状态中,数字8的位置是3,在另状态中位置是7,那么从矩阵的3行7列可找到2,它就是8在两个状态中的偏移距离。
include using namespace std; struct node{ int nodesun[4][4]; int pre; //上步在队列中的位置 int flag ; //步数标识,表示当前的步数为有效的 int value; //与目标的差距 int x,y; //空格坐标 }queue[1000]; //移动方向数组 int zx[4]={-1,0,1,0}; int zy[4]={0,-1,0,1}; //当前步数 int top; int desti[4][4];//目标状态 int detect(struct node *p)//检查是否找到 {int i,j; for(i=1;i<4;i++) for(j=1;jnodesun[i][j]!=desti[i][j]) return 0; return 1; } //打印 void printlj() {int tempt; int i,j; tempt=top; while(tempt!=0) { for(i=1;i<4;i++) for(j=1;j<4;j++) {cout<<queue[tempt].nodesun[i][j]; if(j==3) cout<<" "<<endl; } tempt=queue[tempt].pre; } } //现在状态与目标状态有多少个不同位置 int VALUE(struct node *p) {int count=0; int i,j; for(i=1;i<4;i++) for(j=1;jnodesun[i][j]!=desti[i][j]) count++; return count; } void main() { //初始化 int i,j,m,n,f; int min=10; int temp,find=0,minnumber; top=1; for(i=1;i<4;i++) for(j=1;j<4;j++) {cout<<"请输入第"<<i<<"行"<<"第"<<j<<"列的值"<>temp; queue[1].nodesun[i][j]=temp; } cout<<"请输入初始状态的空格的位置(行)"<>temp; queue[1].x=temp; cout<<"请输入初始状态的空格的位置(列)"<>temp; queue[1].y=temp; queue[1].value=VALUE(&queue[1]); queue[1].pre=0; //上步在队列中的位置 queue[1].flag=0; //目标状态 for(i=1;i<4;i++) for(j=1;j<4;j++) {cout<<"请输入目标状态第"<<i<<"行"<<"第"<<j<<"列的值"<>temp; desti[i][j]=temp; } //根据估价函数 while(!find&&top>0) { for(i=1;i<=top;i++) //////////////////////////////////////////// //min为上图中与目标图有多少个元素不相同,queue[i]为当前图与目标图有多少个元素不相同通过这两个数的比较,就可以得出当前图较之上图向目标图接近同时把当前的i记录下来进行下步比较 {if(queue[i].value<min&&queue[i].flag==0) {minnumber=i;// min=queue[i].value; //还有多少不同的位数 } } queue[minnumber].flag=1; //表示此位有效 ////////////////////////////////////// // for(f=0;f=1&&i=1&&j<=3) {top++; ///////////////////////////////////////////// //位置交换 queue[top]=queue[minnumber]; queue[top].nodesun[m][n]=queue[minnumber].nodesun[i][j]; queue[top].nodesun[i][j]=0; /////////////////////////////////////// //空格移动方向 queue[top].x=i; queue[top].y=j; /////////////////////////////////////// queue[top].pre=minnumber; //上步在队列中的位置 queue[top].value=VALUE(&queue[top]); //有多少位与目标不同 queue[top].flag=0; //标识位初始化 if(detect(&queue[top])) //检查是否为目标 {printlj(); //打印 find=1; //设找到标识位 break; } } } } }
八数码问题种经典的搜索问题,可以使用 A* 算法来求解。A* 算法种启发式搜索算法,可以在保证搜索最优解的同时尽可能减少搜索的时间和空间成本。下面是个使用 Python 实现的八数码问题 A* 算法的示例代码: ``` from queue import PriorityQueue class Puzzle: def __init__(self, board): self.board = board self.moves = [] self.cost = 0 def get_distance(self, target_board): distance = 0 for i in range(3): for j in range(3): value = self.board[i][j] if value != 0 and value != target_board[i][j]: target_i, target_j = divmod(value - 1, 3) distance += abs(i - target_i) + abs(j - target_j) return distance def get_next_puzzles(self): next_puzzles = [] i, j = next((i, j) for i in range(3) for j in range(3) if self.board[i][j] == 0) for di, dj in [(0, 1), (0, -1), (1, 0), (-1, 0)]: if 0 <= i + di < 3 and 0 <= j + dj < 3: next_board = [row[:] for row in self.board] next_board[i][j], next_board[i + di][j + dj] = next_board[i + di][j + dj], next_board[i][j] next_puzzle = Puzzle(next_board) next_puzzle.moves = self.moves + [(i + di, j + dj)] next_puzzle.cost = len(next_puzzle.moves) + next_puzzle.get_distance(target_board) next_puzzles.append(next_puzzle) return next_puzzles def __lt__(self, other): return self.cost < other.cost def solve_puzzle(start_board, target_board): start_puzzle = Puzzle(start_board) start_puzzle.cost = start_puzzle.get_distance(target_board) queue = PriorityQueue() queue.put(start_puzzle) visited = set() while not queue.empty(): puzzle = queue.get() if puzzle.board == target_board: return puzzle.moves for next_puzzle in puzzle.get_next_puzzles(): if tuple(map(tuple, next_puzzle.board)) not in visited: visited.add(tuple(map(tuple, next_puzzle.board))) queue.put(next_puzzle) return None start_board = [[1, 2, 3], [4, 5, 6], [7, 8, 0]] target_board = [[1, 2, 3], [4, 5, 6], [7, 0, 8]] moves = solve_puzzle(start_board, target_board) if moves: for move in moves: print(move) else: print("No solution found.") ``` 在这个示例代码中,我们首先定义了个 `Puzzle` 类来表示每个状态,其中包含了当前的棋盘状态以及移动序列和代价(即移动序列的长度加上当前状态到目标状态的估计距离)。然后我们使用 A* 算法来搜索最优解,其中使用了个优先队列来进行状态的扩展,以保证每次扩展的状态都是代价最小的。最后,我们输出找到的移动序列,或者在无解的情况下输出提示信息。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值