[Pytorch案例实践007]基于VGG16的蚂蚁&蜜蜂图像分类实战

一、项目介绍

项目概述

        这是一个使用PyTorch框架的深度学习项目,目的是构建一个能够区分蜜蜂和蚂蚁的图像分类模型。项目使用了VGG16作为基础模型,并采用了迁移学习的方法来提高模型的性能。

技术栈

  • PyTorch: 主要使用的深度学习框架。
  • Torchvision: 提供了用于图像处理的常用工具,包括数据加载和转换。
  • Matplotlib: 用于绘制训练过程中的损失和准确率曲线。
  • tqdm: 进度条显示库,用于监控训练进度。

数据准备

  • 数据集路径:
    • 训练数据集路径: I:\code\pytorch\VGG\datasets\train
    • 验证数据集路径: I:\code\pytorch\VGG\datasets\val
  • 数据增强:
    • 将所有图像调整为224x224像素。
    • 转换为张量。
    • 使用ImageNet的均值和标准差进行标准化。

模型定义

  • VGG16:
    • 类别数 (num_classes): 2(蜜蜂和蚂蚁)。
    • 预训练 (pretrained): 可选择使用或不使用ImageNet上的预训练权重。
    • 模型实例化后被移动到指定的设备(CPU或GPU)。

训练配置

  • 超参数:
    • 批大小 (batch_size): 4。
    • 学习率 (learning_rate): 0.001。
    • 训练轮数 (num_epochs): 30。
  • 优化器:
    • 使用随机梯度下降 (SGD) 优化器。
    • 动量设置为0.9。
  • 学习率调度器:
    • 使用StepLR策略,在每7个epoch后将学习率乘以0.1。

训练过程

  • 训练循环:
    • 在每个epoch中,模型首先在训练集上进行训练,然后在验证集上进行评估。
    • 使用交叉熵损失 (CrossEntropyLoss) 作为损失函数。
    • 在训练过程中记录训练和验证损失及准确率。
    • 每个epoch结束时,保存当前模型状态。
  • 可视化:
    • 训练完成后,绘制训练和验证的损失、准确率以及学习率的变化曲线,并保存到指定文件夹。

文件结构

  • 输出文件夹 (output_dir): 保存训练好的模型、损失/准确率曲线图和学习率曲线图。

执行

  • 主函数 (main):
    • 接受一个布尔参数 use_pretrained 来决定是否使用预训练权重。
    • 调用 train_model 函数进行模型训练。

注意事项

  • 确保指定的路径正确无误。
  • 如果使用GPU,确保安装了正确的PyTorch版本以及CUDA驱动。
  • 可能需要根据实际情况调整超参数以获得最佳性能。

二、数据集介绍

        数据集之前介绍过,在此不再赘述。

三、完整代码

训练代码:

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import matplotl
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值