AI大模型技术学习之——大模型常用架构以及技术难点

不同的架构,适合不同的任务

很多人对人工智能以及大模型都有一定的误解,那就是弄不明白其中各种专业名词,以及关系。甚至很多人认为大模型就是人工智能,人工智能就是大模型。‍‍‍‍‍‍

也有人认为只有transformer架构的才是大模型,因此,今天就来了解一下模型的架构。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

大模型的架构及优缺点

首先,人工智能(AI)有多种实现方式,而机器学习是其中的一种;而基于机器学习又延伸出了深度学习,深度学习的思想就是分层,通过多个层的叠加实现对数据的分级表达。

而神经网络又是深度学习的一种表现形式,是由模仿人脑神经元的机制而得名,又由于多层的神经网络具有庞大的参数,因此叫做大模型(庞大参数量的机器学习(神经网络)模型)。

所以,大模型的核心是层次堆叠;因此,为了实现这种效果就有了多种神经网络的大模型架构。‍‍‍‍‍‍‍‍‍‍‍

大模型的常用架构主要包括Transformer,BERT,GPT,T5等;每种架构都有其独特的设计理念和应用场景;以下是对这些架构的详细介绍以及它们的优缺点分析。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

_Transformer架构_‍‍‍‍

简介‍‍‍

Transformer是目前大模型的主流架构,由Vaswani等人于2017年提出。它使用了注意力机制替代了传统的RNN和LSTM,能够更好的捕捉长距离依赖关系。‍‍‍‍‍‍‍‍‍‍‍

关键组件‍‍

自注意力机制:计算序列中各元素之间的相关性,生成每个元素的加权表示。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

多头注意力机制:将注意力机制并行化处理,提高模型的表示能力

位置编码:由于模型本身不具备顺序信息,位置编码用于为序列添加位置信息‍‍‍‍

应用

Transformer本身用于各种自然语言处理认为,如机器翻译,文本分类等。

优点:模型可以并行处理序列,训练效率高,能够很好的捕捉长距离依赖。‍‍‍‍‍‍

缺点:在处理长序列时,计算复杂度高,内存占用大‍‍‍‍

BERT(Bidirectional Encoder Representations from Transformers)

简介‍‍‍‍‍

BERT是一种双向Transformer架构,擅长处理自然语言理解认为。它通过遮盖语言模型,和下一句预测进行训练。‍‍‍

特点

双向性允许BERT同时考虑左侧和右侧的上下文,增强了理解能力。‍‍

应用

情感分析,问答系统,文本分类,命名体识别等

优缺点

优点:双向编码器能够更好的理解上下文,尤其适合理解复杂的语言现象

缺点:生成能力较弱,主要适用于理解认为;模型计算成本较高‍‍

GPT(Generative Pretrained Transformer)

简介‍‍‍‍‍‍

GPT是一种基于Transformer的自回归模型,专注于文本生成任务,与BERT不同,GPT是单向的,即只使用过去的上下文来预测当前的单词。‍‍‍‍‍‍‍‍‍‍‍‍‍

关键特点

自回归生成:依次预测下一个单词,适合文本生成任务‍‍‍‍

Transformer解码器:采用Transformer架构中的解码器部分

应用

对话系统,文本生成,文章撰写,翻译等

优缺点

优点:生成文本时能保持一致性和流畅性,适用于多种生成任务‍‍‍‍‍

缺点:由于单向性,在理解复杂等上下文时效果不如BERT

T5(Text-To-Text Transfer Transformer)

简介

T5是一种统一的文本到文本的模型架构,可以将所有任务都转换为文本生成任务;例如翻译任务中的输入是原文,输出是译文;文本分类任务中的输入是句子,输出是类别标签‍‍‍‍‍‍‍‍‍

关键特点

统一框架:所有任务都表示为文本转换任务,简化了模型设计和训练流程‍‍

预训练目标:使用多任务预训练,包括翻译,摘要生成等‍‍‍

在这里插入图片描述

应用

翻译,摘要生成,文本分类,多任务学习等

优缺点

优点:统一框架便于跨任务的知识迁移,模型更具有通用性‍

缺点:对生成任务过于依赖,可能不适合一些特定的理解任务‍‍

基于Transformer架构的文本处理模型开发的人工智能机器人:‍‍‍‍‍‍‍

DistilBERT

简介

DistilBERT是BERT的精简版,通过蒸馏技术减小模型规模,同时保留了大部分性能‍‍‍‍

关键特点

模型蒸馏:通过从大模型中学习,精简模型参数,减少计算需求

应用

与BERT类似的任务,但适用于计算资源有限的场景‍‍‍

优缺点

优点:计算成本低,适合移动设备或实时应用‍‍

缺点:精度略低于完整的BERT模型

给大家推荐一本书,以下是一本学习大模型架构的书,里面详细介绍了大模型的核心架构以及实现原理,感兴趣的朋友可以点击购买:‍‍‍‍‍‍‍‍‍

不同架构的优缺点对比

  • BERT vs. GPT:BERT 适合理解任务,如文本分类、问答系统;GPT 适合生成任务,如文本生成、对话系统。BERT 的双向编码使其在理解上下文时更强,而 GPT 在生成流畅自然的文本时更有优势。

  • Transformer vs. RNN/LSTM:Transformer 可以并行处理,提高了训练效率,且更好地捕捉长距离依赖,但在处理超长序列时计算复杂度较高。RNN/LSTM 则天然适合处理序列数据,但容易出现梯度消失问题。

  • T5 vs. BERT/GPT:T5 的统一框架使其在多任务学习中表现出色,但在专门的理解或生成任务中,可能不如专门设计的 BERT 或 GPT。

普通人如何抓住AI大模型的风口?

领取方式在文末

为什么要学习大模型?

目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。

目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
在这里插入图片描述

随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:

在这里插入图片描述

人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!

最后

如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!

大模型全套学习资料领取

这里我整理了一份AI大模型入门到进阶全套学习包,包含学习路线+实战案例+视频+书籍PDF+面试题+DeepSeek部署包和技巧,需要的小伙伴文在下方免费领取哦,真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述
在这里插入图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四、LLM面试题

在这里插入图片描述
在这里插入图片描述

五、AI产品经理面试题

在这里插入图片描述

六、deepseek部署包+技巧大全

在这里插入图片描述

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值