尝试制作赛博好氧菌
微信和某好友的对话有足够的数据量
同步发布于本人的博客
weclone项目
记得之前搞过ai,cuda装过了
安装 uv
一个Python 包和项目经理
git克隆目录
powershell:
uv venv .venv --python=3.10
因为用的windows环境,只能试试了
.venv\Scripts\activate
激活虚拟环境
uv pip install --group main -e .
安装
还挺慢
不过这个多线程下载挺爽的
python -c "import torch; print('CUDA是否可用:', torch.cuda.is_available());"
检测环境------true
安装 FlashAttention 加速训练和推理:uv pip install flash-attn --no-build-isolation
但是安装失败了
数据准备
数据预处理
这一部分稍后再搞
先试试其他部分
模型下载
git lfs install
跟踪和管理大文件
git clone https://www.modelscope.cn/Qwen/Qwen2.5-7B-Instruct.git
下载模型也挺慢的,而且还没有进度条。。。。
好吧,我收回我的话,速度其实挺快的,而且竟然不走代理。。。
这些参数是一个典型的 AI 模型训练配置(尤其是针对大语言模型或类似任务的微调),通常用于控制训练过程的行为。以下是每个参数的详细解释:
基础训练配置
stage: "sft"
表示当前训练阶段是 Supervised Fine-Tuning (SFT),即有监督微调。常见于指令微调(如 LLaMA、ChatGLM 等模型的指令跟随能力训练)。
dataset: "wechat-sft"
使用的数据集名称,这里可能是自定义的微信对话数据集或其他指令跟随数据集。
dataset_dir: "./dataset/res_csv/sft"
数据集存放的本地路径,通常包含训练样本(如 CSV、JSON 或文本文件)。
use_fast_tokenizer: true
是否使用快速分词器(如 Hugging Face 的 FastTokenizer),牺牲少量精度以加速分词过程。
LoRA 配置(低秩适配)
LoRA(Low-Rank Adaptation)是一种轻量级微调技术,通过低秩矩阵近似参数更新,减少计算量。
lora_target: "q_proj,v_proj"
指定在哪些网络层应用 LoRA。这里可能是注意力机制中的 Query 投影(q_proj) 和 Value 投影(v_proj) 层。
lora_rank: 4
LoRA 矩阵的秩(rank),值越小计算量越低,但可能牺牲表达能力。通常设为 4-64。
lora_dropout: 0.4
LoRA 层的 dropout 概率,防止过拟合(0.4 表示 40% 的神经元会被随机丢弃)。
优化器与正则化
weight_decay: 0.1
L2 正则化系数,惩罚大权重值以防止过拟合(0.1 是较强正则化)。
overwrite_cache: true
是否覆盖已缓存的预处理数据(如分词后的结果),设为 true 可强制重新处理数据。
训练批处理与梯度
per_device_train_batch_size: 8
每个 GPU/CPU 上的训练批次大小(batch size),影响内存占用和训练速度。
gradient_accumulation_steps: 4
梯度累积步数。模拟更大的批次大小(实际 batch_size = 8 × 4 = 32),缓解显存不足问题。
学习率调度
lr_scheduler_type: "cosine"
学习率调度器类型,cosine 表示余弦退火,学习率随训练过程平滑变化(先下降后回升)。
learning_rate: 1e-4
初始学习率(0.0001),常见于微调任务。
warmup_ratio: 0.1
学习率预热比例(前 10% 的训练步数中,学习率从 0 线性增长到 1e-4),避免初始震荡。
训练时长与日志
num_train_epochs: 3
训练轮数(3 轮遍历整个数据集)。
logging_steps: 10
每 10 步记录一次训练日志(如损失、学习率等)。
save_steps: 100
每 100 步保存一次模型检查点。
其他技术
cutoff_len: 256
文本截断长度(256 个 token),超长部分会被丢弃,影响上下文窗口大小。
plot_loss: true
是否绘制训练损失曲线(可视化工具如 TensorBoard 或 WandB)。
fp16: true
使用混合精度训练(FP16),减少显存占用并加速计算(需 GPU 支持)。
flash_attn: "fa2"
使用 Flash Attention 第 2 版(优化注意力计算的算法,显著提升速度并降低显存)。
总结
目标:通过 LoRA 轻量级微调一个语言模型,使其适应指令跟随任务(SFT 阶段)。
关键技术:LoRA、混合精度(FP16)、Flash Attention、余弦学习率调度。
适用场景:中等规模数据集(如微信对话数据),在单卡或多卡 GPU 上训练。
如果有特定参数需要进一步优化或解释,可以结合具体任务调整(如增大 lora_rank 或降低 lora_dropout)。
python weclone/train/train_sft.py
尝试训练,但是突然发现没有数据,嘿嘿🤣
聊天记录迁移还能出bug,微信真垃圾还得想办法
通过,关闭防火墙、禁用虚拟网卡、连接手机热点(宿舍WiFi有隔离)终于解决了
但是速度巨慢无比。
终于是迁移完了,差点给我跑步耽误了。
聊天记录导出工具:PyWxDump
导出的csv 文件夹放在./dataset目录
数据处理
python weclone/data/qa_generator.py
数据就搞好了,接下来就可以训练了
不过我这6G显存不知道能不能行呢
总之先试试:
单卡训练
python weclone/train/train_sft.py
好家伙,直接给显卡干满了
。。。。
然后就无了
报错了,研究研究
很明显爆显存了
uv pip install bitsandbytes
好像没用
改了setting又报错,还不熟悉这些训练框架之类的,也不知道能不能改成4bit精度
还是直接换个模型试试吧
Qwen2.5-1.5B-Instruct
就挺好
git clone https://www.modelscope.cn/Qwen/Qwen2.5-1.5B-Instruct.git
再改一下setting
还是不行
重新处理数据试试
重启试试
没用。。。。。。
重新下载一遍模型试试
ok 成功了,好像是之前下载的时候出问题了。。。。。
貌似是训练完了,但是收敛的好像不太好
想再尝试,但是硬盘满了,而且训练时显存已经快爆了
试试安装
flash-attn总是失败
cuda删了下了12.6版本的试试
还是不行,已经到第二天了,暂时放弃
尝试使用浏览器demo简单推理
python weclone/eval/web_demo.py
可以在这一步测试出合适的temperature
top_p
值,修改settings.json
的infer_args
后,供后续推理时使用。
终于运行出来了
而且回复速度超级快
虽然很智障,但是也能算个加减乘除
以及回复的语气有点意思,但是感觉也不是很像我
需要更多测试
Top-p采样值(Nucleus Sampling)
高创造性任务(如故事生成):p=0.9 允许更多多样性。
低容错任务(如代码生成):p=0.3~0.5 限制随机性。
极端值:
p=1:等同于贪心搜索(生成最可能的结果,但可能重复)。
p=0:随机选择(无意义)。
温度系数(Temperature)
对话系统:T=0.7~0.9 平衡合理性与多样性。
诗歌生成:T=1.2~1.5 增加创造力。
事实性问答:T=0.3~0.5 避免错误。
极端值:
T=0:完全选择概率最高的token(等同于贪心搜索)。
T=∞:完全随机选择(无意义)。
需要确定性(如代码生成):低温 + 低Top-p。
需要多样性(如故事生成):高温 + 高Top-p。
测试:
你好
用go语言写helloworld
今晚玩什么
上号
吃什么
几点玩
其他测试题
问了一堆问题,进行微调,感觉都不太聪明,也许是模型大小的限制吧,2:00了,白天再搞了,该碎觉了。
看了一眼,微信对话机器人的部署有点复杂,看来还得学一下docker
day two
ok
时隔一天,我又来搞了
我又找了一些聊天数据,打算重新训练一下(因为之前搞得这个不怎么好)
快速的过一遍之前的流程
结果最后爆显存了,明明只是多了不到200k的文本,最后降低参数 "per_device_train_batch_size"到4,就好了,刚刚好显存够用.
最终训练损失train_loss = 1.3499,表明模型在训练数据上收敛正常。
虽然测试还是很智障,还很叛逆
然后考虑部署微信对话机器人
必须使用docker
先装一个WSL2(Windows Subsystem for Linux 2)的系统
参考教程
wsl --list --online
查看可用WSL 发行版
wsl --install -d Ubuntu-20.04
安装
没走代理,速度不快
系统就装在c盘吧,毕竟D盘剩余空间已经不如c盘了
设个用户名haoyangjun,再来个吊炸天的弱密码
发现子系统好像用不了我现在的代理…
有点难搞了
新增.wslconfig设置(开了一个镜像网络之类的设置-参照官方文档)
[wsl2]
networkingMode = mirrored
dnsTunneling = true
autoProxy = true
wsl --shutdown
wsl -d Ubuntu-20.04
重启
然后代理开虚拟网卡模式
ping了一下谷歌,延迟很低,看来网络因该没问题了,那就先这样了
安装 Docker
安装,注册一气呵成
用于 Docker Desktop 的中文语言包,链接地址为:DockerDesktop-CN
使用 Docker 部署 AstrBot
读了一下文档,感觉使用挺简单,明天再搞,不能睡太晚
先克隆个仓库
PS D:\git_ghrepo> git clone https://github.com/AstrBotDevs/AstrBot
在目录下运行
PS D:\git_ghrepo\AstrBot> docker compose up -d
结果又卡在网络上了,不知道为什么代理没效果
搞了一堆设置,各种报错,最后关闭系统代理,关闭docker手动代理,用clash的虚拟网卡模式,速度还挺快
上一步骤完成后,输入
docker logs -f astrbot
可以看到
WebUI的地址和默认用户密码
访问即可进入控制面板
至此,终于成功部署
做到这里才发现 Gewechat 在前几天已经停止维护了…
总之先试试
把 Gewechat 的镜像下下来之后因该是正常运行了
用astrbot链接
但是失败
又卡在这里
好吧,最后网络都配置好了,但是由于Gewechat停止维护了,即使本地装好了好像也不能登录…只能考虑别的方法了
可以试试qq
通过 NapCatQQ 协议实现端接入 QQ
比微信方便多了
下载完,直接运行launcher.bat
就好了,然后可以打开webui
结果 NapCatQQ 中添加 WebSocket 客户端一直连不上,因该还是网络问题
重新试了一次好像成功了嘿嘿
用之前搞的qq小号,测试成功了,输入/help成功给我回复了
接下来就是连上大模型了
执行 python weclone/server/api_service.py
启动api服务
报错:ERROR: [Errno 13] error while attempting to bind on address (‘127.0.0.1’, 8006): 以一种访问权限不允许的方式做了一个访问套接字的尝试。
找不到端口占用,换端口也不行,最后没办法竟然通过重启解决了,无语(ˉ▽ˉ;)…
最后。。。。。还是出问题了
在 AstrBot 中新增服务提供商连不上api
最后还是调成功了,因该是docker访问127.0.0.1不是宿主机的网的问题
还差最后一个问题,微调失效了
管理员输入
/tool off_all
好像还是不行
始终是出不来微调后的效果
都重启了一下,突然发现好像有微调效果了,很奇怪,效果不如web demo的好,保留了更多ai的味道,也让朋友测试了一下,这ai说的狗屁不通
不过至此,对于这个项目的复刻(没想到更贴切的词)终于完成了,所有功能正常。美中不足的是我遇到了太多问题,好在最后都基本解决了,虽然部分不明白是什么原理,还有对ai训练的知识实在是不足,基本上没办法改动别人的代码,然后就是使用的几个软件,以及docker,掌握速度很慢,然后就是可恶的网络,对于自己天天用的代理都了解不深,还有debug时问ai结果一点用没有,看来ai取代程序员还需要写时日。
最后,阅读官方文档是个好习惯(如果文档写的一团糟就没办法了),此次用时两个晚上+一个下午,最后搞完还是很有成就感的😀。