题目描述
为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯。一共有 nn 张地毯,编号从 11 到 nn。现在将这些地毯按照编号从小到大的顺序平行于坐标轴先后铺设,后铺的地毯覆盖在前面已经铺好的地毯之上。
地毯铺设完成后,组织者想知道覆盖地面某个点的最上面的那张地毯的编号。注意:在矩形地毯边界和四个顶点上的点也算被地毯覆盖。
输入格式
输入共 n+2n+2 行。
第一行,一个整数 nn,表示总共有 nn 张地毯。
接下来的 nn 行中,第 i+1i+1 行表示编号 ii 的地毯的信息,包含四个整数 a,b,g,ka,b,g,k,每两个整数之间用一个空格隔开,分别表示铺设地毯的左下角的坐标 (a,b)(a,b) 以及地毯在 xx 轴和 yy 轴方向的长度。
第 n+2n+2 行包含两个整数 xx 和 yy,表示所求的地面的点的坐标 (x,y)(x,y)。
输出格式
输出共 11 行,一个整数,表示所求的地毯的编号;若此处没有被地毯覆盖则输出 -1
。
输入:
3 1 0 2 3 0 2 3 3 2 1 3 3 2 2
输出:
3
春眠不觉晓,鲁班哒哒秒
开搞
上代码
#include<bits/stdc++.h>
using namespace std;
int N=1e6+5;
int a[N],b[N],g[N],k[N],n,m,t,ans=-1;
signed main(){
cin>>n;
for(int i=1;i<=n;i++) cin>>a[i]>>b[i]>>g[i]>>k[i];
int x,y;
cin>>x>>y;
for(int i=1;i<=n;i++){
if((x>=a[i]&&x<=a[i]+g[i])&&(y>=b[i]&&y<=b[i]+k[i]))//判断是否覆盖点位
ans=i;
}
cout<<ans;
return 0;
}
每日出二题,洛谷即纳尼