题目描述
设有 N×NN×N 的方格图 (N≤9)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字 00。如下图所示(见样例):
某人从图的左上角的 AA 点出发,可以向下行走,也可以向右走,直到到达右下角的 BB 点。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字 00)。
此人从 AA 点到 BB 点共走两次,试找出 22 条这样的路径,使得取得的数之和为最大。
输入格式
输入的第一行为一个整数 NN(表示 N×NN×N 的方格图),接下来的每行有三个整数,前两个表示位置,第三个数为该位置上所放的数。一行单独的 00 表示输入结束。
输出格式
只需输出一个整数,表示 22 条路径上取得的最大的和。
输入:
8 2 3 13 2 6 6 3 5 7 4 4 14 5 2 21 5 6 4 6 3 15 7 2 14 0 0 0
输出:
67
春眠不觉晓,鲁班哒哒秒。
废话不多说,代码也不多。
#include<cstdio>
#include<iostream>
using namespace std;
const int N=11;
int dp[N][N][N][N];
int a[N][N];
int n,x,y,z;
int main()
{
scanf("%d",&n);
for(;;)
{
scanf("%d%d%d",&x,&y,&z);
if(x==y&&y==z&&z==0)
{
break;
}
else
{
a[x][y]=z;
}
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
for(int k=1;k<=n;k++)
{
for(int l=1;l<=n;l++)
{
dp[i][j][k][l]=max(max(dp[i-1][j][k-1][l],dp[i-1][j][k][l-1]),max(dp[i][j-1][k-1][l],dp[i][j-1][k][l-1]))+a[i][j]+a[k][l];
if(i==k&&l==j)dp[i][j][k][l]-=a[i][j];//注意判断这个点走过几次并处理
}
}
}
}
printf("%d",dp[n][n][n][n]);
return 0;
}
每日出两题,洛谷即纳尼。
关注yywlsrt/yywlsrt小号再走呗