学会python可以从哪些平台接单赚米?看完我给你介绍的这几个平台,你就知道了

今天给大家介绍几个程序员可以接私活的平台

其中包括:国内15个平台,国外9个平台。私活虽然也没有那么好做,一般私活的性价比远比上班拿工资的低。但是作为一个额外的创收渠道还是不错的~

一、国内接单平台
1.程序员客栈:https://www.proginn.com

程序员客栈中国非常领先的自由工作平台,为中高端程序员、产品经理和设计师等等互联网相关人员提供稳定的线上工作机会,包括自由工作、远程工作和兼职工作,还支持按需雇佣,工作模式非常多,感兴趣的推荐大家尝试一下。

虽然名称叫程序员客栈,但是除了程序员,像产品经理,设计师等等互联网相关人员,都能在上面找

2. CODING 码市:https://mart.coding.net

Coding 旗下的互联网软件外包服务平台,平台以外包为主。

3. 开源众包:zb.oschina.net/projects

开源中国的众包平台,主要是以众包为主。

4. 猪八戒:https://zbj.com

找兼职的地方,主要是入门级项目,不适合专业程序员,只适合新手。

合自己的

5. 英选:linktion.cn

平台以定制开发外包服务为主,也是外包项目平台。

项目。

6. 快码众包:kuaima.co7. 码易众包平台:mayigeek.com8. 一早一晚平台:yizaoyiwan.com/9. 开发邦:http://www.kaifabang.com10. 人人开发:rrkf.com11. 厘米脚印:http://www.limijiaoyin.com12. Sxsoft:https://www.sxsoft.com/13. 猿急送:https://www.yuanjisong.com/14. 实现网传送门:shixian.com/15. 智城外包网:http://www.taskcity.com/

二、国外接单平台
1. Upwork:https://www.upwork.com/Upwork 是全球最大的、最优秀的、最规范的综合类人力外包服务平台,由著名的 Elance 和 oDes
2. Freelancer:https://www.freelance.com/
http://Freelancer.com 的工作类型覆盖了很多不同的领域,由程序开发到市场营销、广告、会计、法务等一系列的可以远程的工作。
3. Dribbble:https://dribbble.com/jobs你没看错,Dribbble 不只是全球最受欢迎的设计师社区,同样是设计师寻找远程工作的好出处。自从被 Tiny 收购后,Dribbble 的招聘属性正在慢慢增强,试着持续 PO 出自己的好作品,等待你的伯乐,同样你可以关注 Jobs 页面,给心仪的 Team 提交简历。
4. Stackoverflow:https://stackoverflow.com/jobs图片被广大程序员熟知的 Stackoverflow 本身就是一个全民远程工作的公司,程序员在远程工作中有很大的先天优势,Stackoverflow Jobs 里有远程职位的筛选,这里有丰富的远程技术职位。
5. 99designs:https://99designs.com/99designs 是一个专门针对设计师的雇佣平台,你可以在这里参加设计竞赛给公开的项目投标,也可以给雇主提供一对一的专业服务。
6. Remoteok:https://remoteok.io/Remoteok 不仅提供最初的兼职类远程工作,还有全职类,签署合同类和实习类的工作。网站创始人 Pieter Levels 本身就是一名数字游民,他同样是 Nomadlist 的创始人。
7. Toptal:https://www.toptal.com/Toptal 是一个高端一些的自由职业者平台,适合比较有经验和工作尽力的远程工作者。它将企业与全球的软件工程师,设计师和业务顾问联系起来。
8. Ange:https://angel.co/job-collections/remoteAngelList 主要是服务于初创公司和天使投资人的平台,这里还有初创公司提供的远程工作的机会,如果对远程加入初创公司感兴趣的,可以尝试一下。
9. Topcoder:https://www.topcoder.com/Topcoder 通过算法比赛吸引世界顶级的程序员,他会将一下大型项目分割成很多小模块,通过竞赛的模式交给用户来做,优胜者可以拿到制定模块的奖金。

关于Python技术储备

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!包括:Python激活码+安装包、Python web开发,Python爬虫,Python数据分析,Python自动化测试学习等教程。带你从零基础系统性的学好Python!

一、Python大礼包

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
图片

CSDN大礼包《python兼职资源和全套学习资料》免费领取
二、 Python电子书

图片

三、入门学习视频

四、 Python爬虫秘笈

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

图片

五、 数据分析全套资源

图片

六、python副业兼职与全职路线

在这里插入图片描述上述这份完整版的Python全套学习资料已经上传CSDN官方,如果需要可以微信扫描下方CSDN官方认证二维码 即可领取《python安装包&全套学习资料》免费分享

<think>好的,我需要处理用户的问题。用户之前提出了一个数据同步的方案,将16年开店的数据拆分成历史全量和近一个月的全量任务,然后快速完成近期的任务并开启增量API。我之前的回复详细分析了方案的可行性和优化建议,现在用户说“你有点犟诶,那你给个方案?”,看起来用户可能觉得之前的分析太复杂,或者希望得到更直接的解决方案。 首先,我需要理解用户的需求。用户的核心目标可能是高效、可靠地将历史数据和增量数据同步,避免数据丢失和重复。之前的分析可能让用户感到有些繁琐,所以现在需要提供一个更简洁、直接的方案,同时保持必要的细节以确保可行性。 接下来,回顾之前的优化建议,里面包括了时间窗口控制、去重机制、缓冲区和性能优化措施。用户可能希望这些内容能更简明扼要,或者以不同的结构呈现。我需要把这些关键点整合成一个更清晰、步骤明确的方案,避免过多的技术术语,让用户容易理解。 然后,用户提到“近一个月的数据任务很快完成,大概两分钟左右”,这里需要注意数据量的问题。如果近一个月的数据量很大,两分钟可能不够,所以需要验证数据规模,或者提出分页处理、并行处理等方法,确保在合理时间内完成。 另外,用户关心的是增量衔接的问题,即在切换全量和增量时可能出现的数据间隙。之前的方案中提到了使用缓冲区(如Redis)来暂存可能遗漏的数据,这部分需要保留,并明确说明其作用。 还要考虑用户的执行流程,是否需要流程图或者步骤说明,让用户能一步步操作。同时,数据验证的方法也很重要,用户需要知道如何确认数据完整性和一致性。 最后,回应用户的语气,用户说“你有点犟”,可能需要更友好、更直接的回应,避免过于技术化的解释,用更口语化的语言表达,同时保持专业性。 综合以上分析,我需要将之前的优化建议重新组织,分为几个明确的步骤,每个步骤包含关键点和实施方法,确保用户能够轻松跟随,并理解每个步骤的目的和操作方法。同时,需要强调验证步骤和监控措施,确保方案的可靠性。</think>以下是一个更简洁且高可靠性的分阶段同步方案,重点解决**快速上线**与**数据零丢失**的核心需求: --- ### **极简版三步走方案** ```mermaid graph LR A[历史数据全量] -->|通宵跑完| B[近30天数据快速同步] B -->|2分钟内完成| C[开启增量监听] C --> D[实时补漏缓冲区] ``` --- ### **具体实施步骤** #### **第一步:历史数据全量同步(无时间压力)** - **执行时间**:凌晨业务低峰期启动 - **关键技巧**: - 按店铺ID分片同步:`WHERE shop_id % 10 = 0` (分10个批次) - 禁用数据库索引:同步完成后再重建索引,速度提升5-10倍 - **截止时间**:保留最后1小时不同步(如:全量截止到`2023-08-31 23:00:00`) #### **第二步:近30天数据闪电战(严格2分钟)** - **执行步骤**: 1. 启动前冻结API写入(维护模式10秒) 2. 获取当前精确时间点:`sync_cutoff = 2023-09-01 10:00:00.000` 3. 用并行线程拉取数据: ```python # 启动4个线程分别处理不同时间片 threads = [ Thread(target=sync, args=('2023-08-01', '2023-08-08')), Thread(target=sync, args=('2023-08-09', '2023-08-16')), Thread(target=sync, args=('2023-08-17', '2023-08-24')), Thread(target=sync, args=('2023-08-25', sync_cutoff)) ] ``` 4. 强制时间限制:2分钟到点立即终止,未完成部分转增量处理 #### **第三步:增量监听与补漏(永久生效)** - **双重保障机制**: ```mermaid graph TB A[增量API] -->|正常数据流| B[主数据库] A -->|同时写入| C[(Redis Sorted Set)] D[定时补漏程序] -->|每5分钟检查| C -->|回填缺失数据| B ``` --- ### **为什么这个方案更可靠?** 1. **时间切割点冻结**:通过维护模式确保切割时间点无数据变动 2. **未完成数据兜底**: - 近30天同步未完成的部分,通过Redis记录时间窗口(`start_time`到`sync_cutoff`) - 增量程序启动时会自动补拉这个时间段的数据 3. **缓冲区双重校验**: - Redis保存7天内的增量数据(按时间戳排序) - 每天凌晨用SQL对比源库与目标库的count(*),自动触发差异修复 --- ### **你需要准备的资源** | 资源类型 | 配置要求 | 用途说明 | |----------------|---------------------------|--------------------------| | 临时Redis | 集群版,32GB内存 | 增量数据缓冲区 | | 数据库账号 | 只读权限+临时写权限 | 同步期间临时提升权限 | | 监控看板 | 包含以下指标: | 实时同步状态可视化 | | - 数据延迟 | 红色警报阈值 >30秒 | | | - 缓冲区堆积量 | 黄色警报阈值 >10,000条 | | --- ### **上线Checklist** 1. [ ] 在测试环境模拟时间切割点冻结操作 2. [ ] 验证2分钟强制终止后,增量程序能否自动补全数据 3. [ ] 准备应急回滚脚本(清除当天数据+重新全量同步) 4. [ ] 配置Prometheus监控规则(示例报警语句): ```bash # 数据延迟报警 ALERT SyncLagTooHigh IF rate(orders_updated[5m]) < 10 AND incremental_lag{job="sync-service"} > 30 ``` --- 这个方案通过**强制时间点冻结** + **缓冲区兜底**的组合拳,在保证业务快速上线的同时,彻底解决了你可能担心的这些问题: - 历史数据同步慢影响上线 - 切割时间点漏数据 - 突然爆单导致增量API崩溃
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值