[数据集][目标检测]智慧城市-交通违规行为检测数据集VOC+YOLO格式4662张7类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)
图片数量(jpg文件个数):4662
标注数量(xml文件个数):4662
标注数量(txt文件个数):4662
标注类别数:7
标注类别名称:["violation crossing ","violation crosswalk","violation helmet","violation normal","violation passenger","violation pedestrian","violation trafficlight"]
数据集编号:mbd.pub/o/bread/Zp6Ym59p
交通违规行为,具体包括:violation crossing(越线违规)、violation crosswalk(人行道违规)、violation Helmet(未佩戴头盔违规)、violation normal(正常行为)、violation passenger(乘客违规)、violation pedestrian(行人违规)以及violation trafficlight(交通信号灯违规)。
每个类别标注的框数:
violation crossing 框数 = 910
violation crosswalk框数 = 1070
violation helmet 框数 = 458
violation normal 框数 = 640
violation passenger 框数 = 437
violation pedestrian 框数 = 1146
violation trafficlight 框数 = 278
总框数:4939
使用标注工具:labelImg
标注规则:对类别进行画矩形框
重要说明:暂无
特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

图片预览:

标注例子:

### 使用YOLOv8实现违规占道检测的技术方案 YOLOv8 是一种先进的目标检测框架,能够高效地完成图像中的物体识别任务。为了实现违规占道检测功能,可以通过以下方式构建系统: #### 1. 数据集准备 要使 YOLOv8 能够准确检测出占道经营的行为,需要收集并标注相应的数据集。这些数据应包含各种场景下的占道经营活动图片或视频片段,例如路边摊贩、店铺外摆放商品等情形。对于每图片,都需要精确地标记出哪些部分属于“占道”的区域[^2]。 #### 2. 模型训练 利用已有的数据集来微调预训练好的 YOLOv8 模型权重文件。具体操作如下: - **安装依赖库**:首先确保环境中已经正确配置好 ultralytics 库以及其他必要的 Python 包。 ```bash pip install ultralytics ``` - **定义配置参数**:创建一个 YAML 文件用于描述自定义的数据类别以及路径设置等内容。 ```yaml train: ./data/train/images/ val: ./data/val/images/ nc: 1 # 类别数量 names: ['occupying_road'] # 占道类别的名称 ``` - **启动训练过程**:通过命令行工具指定使用的 GPU 设备号(如果有多个),输入下面这条指令即可开始训练新的模型版本。 ```python from ultralytics import YOLO model = YOLO('yolov8n.pt') # 加载基础模型 results = model.train(data='path/to/data.yaml', epochs=100, imgsz=640) ``` #### 3. 实时监控与报警机制 一旦完成了上述两个阶段的工作之后,在实际部署过程中还需要考虑以下几个方面的问题: - 当前摄像头采集的画面经过推理得出的结果会显示在界面上; - 如果发现了任何违反规定的情况,则立即触发警报并将截图连同录像一起发送给相关部门人员查看处理[^5]。 #### 示例代码展示 以下是关于如何加载训练完毕后的模型并对单幅测试图像进行预测的一个简单例子: ```python from PIL import Image import torch from ultralytics import YOLO # Load pre-trained model model = YOLO('./runs/detect/train/weights/best.pt') # Open an image file to predict on. img_path = 'test.jpg' image = Image.open(img_path) results = model(image) # Perform inference. for r in results: boxes = r.boxes.xyxy.numpy() # Get bounding box coordinates as numpy array. confidences = r.boxes.conf.numpy() class_ids = r.boxes.cls.numpy().astype(int) print(f'Detected {len(boxes)} objects.') ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值