碎碎念:
前两个月全球首款通用型 AI 智能体产品“Manus”发布的时候,可谓是群情激昂,一个邀请码被炒到了5万,甚至10万。
当时各位是否也想过,彻底解放双手,让AI牛马来全天候替你上班干活,告别重复劳动?
但实际使用过的朋友也发现了“Manus”不仅价格贵,而且不稳定
就在我从惊喜到失望的时候
又一款开源的通用人工智能“Aipy”上线了!而且价格诱人。
一起来看看怎么样吧。
一、Aipy 的核心特性与技术突破
Aipy 由知道创宇于 2025 年 4 月发布,其核心理念是 "No Agents, Code is Agent",即通过大模型直接生成 Python 代码并执行,实现任务自动化。这种Python-Use 新范式,彻底改变了传统 AI Agent 依赖预定义工具的模式,让 AI 能够动态调用本地环境、API 接口甚至物联网设备,真正实现 “知行合一”。
1.1、技术架构与功能实现
- 任务闭环能力:Aipy 通过 “理解需求→生成代码→执行验证→反馈优化” 的完整流程,支持从数据分析、文档处理到设备控制的全场景任务。例如,它能自动识别医院检查单照片,提取指标并生成治疗建议,或调用本地开源语音模型处理视频文件生成字幕。
- 本地部署与隐私保护:与 Manus 依赖云端执行不同,Aipy 支持完全本地化运行,用户数据无需上传至云端,尤其适合处理合同审查、财务分析等敏感场景。其内置的 Python 环境可直接操作本地数据库、办公软件甚至工业设备,误差控制在千分之三以内。
- 多模型兼容与成本优化:Aipy 可接入 GPT、DeepSeek 等主流大模型 API,也支持本地部署的 Ollama、LMStudio 模型。测试显示,使用 DeepSeek 模型时,任务 token 消耗仅为 Manus 的 1/3,单次调用成本不足 0.002 美元。
1.2、与 Manus 的差异化对比
维度 | Manus | Aipy |
技术路径 | 多智能体协作架构,依赖云端虚拟机 | 直接生成 Python 代码,本地执行 |
成本模式 | 订阅制(月费 50 美元起)+ 任务溢价 | 开源免费,仅支付大模型 API 调用费用 |
稳定性 | 云端执行易受网络波动影响 | 本地运行更可控,社区持续优化 |
数据安全 | 数据需上传至云端 | 完全本地化,符合国内数据安全法规 |
灵活性 | 依赖预定义工具链 | 动态生成代码,支持无限扩展 |
二、实际应用场景与用户反馈
2.1、 工作提效
任务一:用 fscan扫描漏洞
任务背景:作为一名安全测试工程师,每次用 fscan 扫完漏洞都像面对一堆乱码,几百行日志里找开放端口,眼睛快瞎了也漏看几个,希望定制一个 fscan 解析工具。
提示词:帮我生成一个可以解析fscan扫描结果的工具,要求将扫描到的重要信息提取出来,例如包含[PORT]并且状态为open的为端口扫描数据,将其保存到一个excel中;将[SERVICE]保存到一个excel中;包含[VULN]的为存在的漏洞,将其保存在一个excel中;[HOST]为扫描到的存活主机,要解析的文件在"C:……",要求有gui界面
Aipy首先是对任务进行拆解,然后直接开始编码,差不多三分钟,GUI界面的解析工具就出炉了,只需要将本地文件上传就可以开始解析。
任务二:EXE 木马的静态检测
提示词:帮我写一个小型的木马静态特征查杀工具,用于检测windows下的exe可执行文件是否是可疑的木马。我觉得需要一下功能:1. 扫描文件静态字符串,查看是否有明显的恶意特征检查程序熵值是否异常 3. 检查程序动态连接函数,是否存在可疑的导入函数、导出函数的组合扫描PE头及相关分节,确认该程序所使用编程语言、编译链、最低兼容的系统、是否使用已知的加壳技术最后,把这个程序保存为aipy_kill_rat.py文件中,测试该程序,确保没有任何异常。最后,测试我的exe程序:"D:\Tools\......."。检测这个文件是不是恶意的木马。把写好的软件保存在项目文件夹下。
任务执行后生成一个程序,它能扫描文件静态字符串,找出藏在文件里的恶意特征。
可以对可疑字符串特征、熵值、导入函数进行分析。
任务总结:Python加LLM的组合形式,给予了非技术人员依靠自然语言使用Python开发一些提效工具的可能,目前开发的工具在使用上还是没有什么问题。
2.2、个人用户体验
任务一:撰写比价报告
提示词:我是黄黑皮,油性肤质,同时我是学生党没什么钱,请帮我从各种社交软件里搜寻资料,最后挑选最合适我的3款粉底液并将他们的品牌、价格、适用肤质、肤感、持妆度、推荐我的色号生成一个美观简洁的htm文档,名字为“粉底液推荐”并显示在桌面上。
Aipy得到任务后很快确定了任务分析和技术方案。
爬取到推荐产品后,Aipy会进入官网爬取产品的特征信息,制作成为精美的网页。
任务二:小游戏制作
提示词:做一个贪吃蛇游戏,中文说明,有开始界面、重新开始界面、游戏记录,输出整个html代码,保存到当前工作目录,并运行它。
任务总结:即使是简单是自然语言也可以输出不出错的Python程序,只是在网站爬取和界面美化方面需要改进。
三、成本与商业化策略
3.1、 费用结构
- 基础服务:Aipy 开源免费,用户仅需承担大模型 API 调用费用。以 DeepSeek-V3 为例,输入 tokens 每百万约 0.5-2 元(缓存命中 / 未命中),输出 tokens 每百万 8 元。
3.2、 社区生态
- GitHub 活跃度:Aipy 开源仓库已吸引超过 2000 次 Star,贡献者来自金融、医疗等多个领域,持续优化代码生成质量和支持库。
- 开发者工具:社区提供可视化任务编排界面和调试工具,降低非技术用户的使用门槛。
四、总结
Aipy 的出现标志着通用 AI Agent 从 “云端黑箱” 向 “本地可控” 的重要转变。其开源模式和 Python 生态整合,为个人开发者和企业提供了低成本、高灵活性的自动化解决方案。尽管在复杂任务处理和硬件兼容性上仍有提升空间,但 Aipy 已展现出替代 Manus 等高价产品的潜力。对于追求数据安全、需要本地化执行的用户,Aipy 无疑是当前更优的选择。建议关注其社区动态,及时获取功能更新和最佳实践。