异常检测(Anomaly Detection) - 原理与代码实例讲解
关键词:异常检测, 机器学习, 深度学习, 特征提取, 核函数, 异常值检测, 应用案例
1. 背景介绍
1.1 问题由来
异常检测(Anomaly Detection)是机器学习和人工智能领域中的一项重要任务。其核心目标是从大量正常数据中识别出异常数据,即"离群点"或"异常值"。这些异常数据可能指示潜在的错误、故障、欺诈、入侵行为等,对企业的安全、运营和业务决策至关重要。异常检测在金融风控、网络安全、医疗诊断、工业故障检测等领域有广泛应用。
异常检测的传统方法包括统计学方法、基于规则的方法和基于模型的方法等。然而,这些方法存在一定的局限性:
- 统计学方法需要假设数据符合某种分布,当数据分布发生变化时,模型效果可能下降。
- 基于规则的方法依赖于手工设计的规则,需要大量的领域知识,难以扩展到大规模数据。
- 基于模型的方法虽然可以处理大规模数据,但往往需要大量的标记数据进行训练,且模型过于复杂时会导致计算成本高昂。
为了应对这些挑战,近年来,基于深度学习的异常检测方法逐渐崭露头角,成为了研究的热点。深度学习通过自动学习数据的