分类(Classification) - 原理与代码实例讲解
关键词:分类, 监督学习, 逻辑回归, 支持向量机, 决策树, 集成学习, Python, Scikit-learn
1. 背景介绍
1.1 问题由来
在人工智能领域,分类是最基础也是最广泛应用的一种机器学习任务。分类问题指的是,给定输入数据和其对应的标签,训练一个模型能够对新输入数据进行正确的分类。分类问题在金融、医疗、电商、安全等多个领域都有重要应用,如客户流失预测、疾病诊断、欺诈检测、图片分类等。
近年来,随着深度学习技术的快速发展,神经网络已经成为处理分类问题的主要工具。经典的全连接神经网络、卷积神经网络(CNN)、循环神经网络(RNN)等模型都已经被广泛应用于图像、语音、自然语言处理等多个领域。但神经网络模型通常比较复杂,训练成本高,难以解释,因此并不适用于所有场景。相比之下,传统的基于统计模型的分类算法具有简单易懂、计算量小、可解释性强等优点,仍然有重要的研究价值和应用前景。
1.2 问题核心关键点
要充分理解基于统计模型的分类算法,需要先掌握以下核心概念:
- 监督学习