可解释人工智能 原理与代码实例讲解

1. 背景介绍

1.1 问题由来

随着人工智能(AI)技术的快速发展,机器学习模型在各个领域的应用日益广泛,但同时也引发了一系列关于模型“黑盒性”的讨论。传统模型如决策树、逻辑回归等易于解释,但往往需要手动调参且效果有限。而深度学习模型如神经网络、支持向量机等,虽然效果出色,但难以直观理解其内部逻辑,往往被诟病为“黑盒”模型。在医疗、法律、金融等高风险领域,模型的决策过程是否可信、是否符合伦理道德标准,成为关键的考量因素。

可解释人工智能(XAI)应运而生,旨在通过对模型的内部决策过程进行可视化、分析,增强模型的可解释性,提高模型的透明度和可信度。XAI研究已成为AI领域的一大热点,各国政府和组织也开始高度重视,例如欧盟《通用数据保护条例》(General Data Protection Regulation, GDPR)就要求对AI决策过程进行“黑盒性”解释。

1.2 问题核心关键点

可解释人工智能的目标是通过辅助模型解释,让AI决策过程更加透明、可信、可理解,从而提升模型在实际应用中的可信度。其核心关键点包括:

  • 特征重要性:识别对模型预测有显著影响的特征,从而理解模型的决策逻辑。
  • 局部可解释性:提供特定样本的解释,揭示模型在局部范围内的决策依据。
  • 全局可解释性&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值