垂直联邦学习:跨行业数据协作的新模式
关键词:垂直联邦学习, 跨行业数据协作, 联合学习, 联邦学习, 隐私保护, 数据共享, 模型训练
1. 背景介绍
1.1 问题由来
在人工智能(AI)和机器学习(ML)领域,数据是关键的生产要素。高质量、大规模的数据往往能够极大提升模型的性能和效果。然而,数据资源的分布不均和隐私保护的需求,使得单一机构难以独自拥有足够的优质数据。为了克服这一挑战,联合学习(Federated Learning, FL)应运而生。
联合学习是一种分布式机器学习范式,各机构通过保留本地数据在本地计算,仅共享模型参数的更新信息,从而实现模型联合训练。联合学习解决了单一机构数据不足的问题,但也面临着模型通信开销大、数据分布不均等新的挑战。
在此基础上,垂直联邦学习(Vertical Federated Learning, VFL)作为一种更高级的联合学习范式,提出了更有效的数据协作机制。VFL通过各参与方共享垂直数据结构(如数据表),允许更灵活和高效的模型训练,降低通信开销,提高模型性能。
本文聚焦于垂直联邦学习的研究,旨在探讨其在跨行业数据协作中的新模式&#