离AI更进一步|全新阵容!杰和科技AIOT解决方案

AI与物联网(IoT)的融合,形成了AIoT(人工智能物联网)这一新兴领域,为传统产业转型升级提供了无限可能。人工智能(AI)与物联网技术(IoT)的关系就如同人体的大脑与神经,物联网神经连接着身体的各个部分,这些部分所搜集的资讯再传达至大脑来做出反应。

依托 AIoT产品布局优势,杰和科技在AIoT各产品线持续渗透,在汽车电子、机器视觉、工业应用、教育行业、消费电子等领域继续深耕,推出迷你工作站、AI PC、工业计算机算力主板、商用计算机算力主板等多款硬件产品,致力于为各领域提供高效、稳定的AIOT解决方案。

AI PC N601

借助AI PC的强大算力,AI PC逐渐走进中小型公司,AI大模型与本地AI终端算力的结合,使得企业在成本、安全、效率上实现了全方位的提升,随着AI更多应用场景落地,AI PC也将成为各行各业的办公标配。

迷你工作站WA814

杰和科技专业迷你工作站WA814,可在小型办公室使用或者外出携带,常应用于3D建模、动画渲染、数字内容创作、AI训练等场景。在工业及交通领域,满足视频监控、环境监测、工业自动化中长时间不间断处理大量数据的需求。

AI一体机主板 CB4-411

基于一体机行业需求,杰和科技推出一体机主板CB4-411,搭载 Intel® Meteor Lake 平台处理器,用户可以直接在电脑上处理AI工作,一体机本身集成了显示器、主机和其他硬件组件,设计简洁且节省空间,在办公、家庭娱乐、数字创作等多种场景下,CB4-411可以助力一体机加速图像识别、图形渲染、视频编辑等任务。

8K人工智能主板 IB3-771

ARM主板IB3-771采用瑞芯微RK3588处理器,满足各种人工智能场域对工业主板:高算力、低功耗、高扩展性、高可靠性、高安全性等要求,IB3-771支持在宽温、复杂电磁等恶劣环境下稳定运行,可广泛应用于机器人、边缘计算、智能NVR、智能汽车、智慧大屏、AR/VR、智能自助终端等AIoT行业类应用市场。

AI轻算力主板 IB3-761

ARM主板IB3-761基于瑞芯微RK3568四核64位处理器开发,可实现多任务并行、更大数据集的高效处理,丰富的接口,具有性能强、内存大、集成度高、扩展能力强等特点,在处理速度和图形处理能力方面都表现出色,可广泛应用于物联网网关、边缘存储、工控平板、工业检测、工控盒、自助终端、云终端、车载中控、机器人等行业定制市场。

随着AI技术的不断发展和物联网设备的普及,杰和科技的AI产品将在更加广泛的应用场景中发挥重要作用,从智能制造到智慧城市,从个性化医疗到自动驾驶,杰和科技的AI产品将赋能各行各业,推动产业转型升级。

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值