A随机 B固定 C遍历 D确定
为了解决隐马尔科夫模型中的解码问题,我们提出了(Viterbi)算法。
填空题:
1.在隐马尔可夫模型(HMM)中,我们_______(知道/不知道)模型具体的状态序列,_______(知道/不知道)状态转移的概率。
答案:不知道,知道
2.隐马尔可夫模型在众多领域有广泛的使用,如____(举一例即可)。
答案:(语音识别、机器翻译、中文分词、命名实体识别、词性标注、基因识别)
3.EM算法用于无监督学习中时输入_______输出_______
答案:(观测数据)(隐马尔可夫模型参数)
4.( )和( )都离散的马尔科夫过程称为马尔科夫链。
答:时间 状态
5.EM算法是一种迭代优化策略,其基本思想是:首先根据_____,估计出模型参数的值;然后再依据上一步估计出的参数值估计____,然后反复迭代,直至最后收敛,迭代结束。
答案:己经给出的观测数据;缺失数据的值;
6.要解决隐马尔科夫链的三个基本问题之一的概率计算问题,即“给定模型λ=(A,B,π)λ=(A,B,π)和观测序列OO,计算在模型λλ下观测序列出现的最大概率P(O|λ)”,需要用到的算法是____。
答案:(前向、后向算法)
7.EM计算方法每一次迭代都分为()、()这两步。
答案:期望步 极大步
选择题:
1、请选择下面可以应用隐马尔科夫(HMM)模型的选项( )
A.基因序列数据集
B.电影浏览数据集
C.股票市场数据集
D.所有以上
答案:D
2.下列模型属于机器学习生成式模型的是()
A.朴素贝叶斯
B.隐马尔科夫模型(HMM)
C.马尔科夫随机场(Markov Random Fields)
D.深度信念网络(DBN)
答案:ABCD
3.EM算法用于无监督学习时执行流程为()
A初始化模型参数;迭代求解;迭代终止;模型参数收敛,得到模型参数
B初始化模型参数;模型参数收敛;迭代求解;迭代终止,得到模型参数
C迭代求解;初始化模型参数;迭代终止;模型参数收敛,得到模型参数
D迭代求解;迭代终止;初始化模型参数;模型参数收敛,得到模型参数
答案:A
- 给定一个模型,如何计算某个特定的输出序列的概率?
A.Forward-Backward算法
B.维特比算法
C.鲍姆-韦尔奇算法
D.CNN算法
答案:A
5.下列关于EM算法的说法中,不正确的是()。
A、EM算法是迭代求解最大值的算法,同时算法在每一次迭代时分为两步,E步和M步。
B、EM算法是为了解决数据缺失情况下的参数估计问题。
C、EM算法中的极大似然估计就是用来估计模型参数的统计学方法。
D、EM算法不可以保证收敛到一个稳定点,即EM算法不是收敛的。
答案:D
(解析:EM算法可以保证收敛到一个稳定点,即EM算法是一定收敛的。)
6.HMM由马尔科夫链和一般随机过程组成,他们分别由( )描述。
A.观察值概率、转移概率
B.转移概率、观察值概率
C.初始概率、转移概率
D、观察值概率、初始概率
答案:B
7.关于极大似然估计(Maximum Likelihood Estimate,MLE),说法正确的是?()
A. MLE 不存在
B. MLE 总是存在
C. 如果 MLE 存在,那么它的解可能不是唯一的
D. 如果 MLE 存在,那么它的解一定是唯一的
答案:C
- 孤立词识别中,使用隐马尔科夫模型时需要考虑的三个方面为_______、_______、_______、
答案:求值,解码,训练
- 通常来讲,一个隐马尔可夫模型可以用_______、_______、_______来简洁表示
答案:隐含状态转移概率矩阵 A、 观测状态转移概率矩阵 B、 初始状态概率矩阵 π
3:下面选项中,不是HMM语音系统的实现所需要求的是
A.语音信号预处理与特征提取
B.声学模型与模式匹配
C.语言模型与语言处理
D.文本建模与纹理建模
答案:D
- 设有N个缸,每个缸中装有很多彩球,球的颜色由一组概率分布描述。实验进行方式如下
根据初始概率分布,随机选择N个缸中的一个开始实验
根