2022春山东大学人工智能导论期末题库附答案_人工智能导论设计题

A随机 B固定 C遍历   D确定

为了解决隐马尔科夫模型中的解码问题,我们提出了(Viterbi)算法。

填空题:

1.在隐马尔可夫模型(HMM)中,我们_______(知道/不知道)模型具体的状态序列,_______(知道/不知道)状态转移的概率。   
答案:不知道,知道

2.隐马尔可夫模型在众多领域有广泛的使用,如____(举一例即可)。

答案:(语音识别、机器翻译、中文分词、命名实体识别、词性标注、基因识别)
3.EM算法用于无监督学习中时输入_______输出_______
答案:(观测数据)(隐马尔可夫模型参数)

4.( )和( )都离散的马尔科夫过程称为马尔科夫链。
答:时间 状态

5.EM算法是一种迭代优化策略,其基本思想是:首先根据_____,估计出模型参数的值;然后再依据上一步估计出的参数值估计____,然后反复迭代,直至最后收敛,迭代结束。
答案:己经给出的观测数据;缺失数据的值;
6.要解决隐马尔科夫链的三个基本问题之一的概率计算问题,即“给定模型λ=(A,B,π)λ=(A,B,π)和观测序列OO,计算在模型λλ下观测序列出现的最大概率P(O|λ)”,需要用到的算法是____。
答案:(前向、后向算法)
7.EM计算方法每一次迭代都分为()、()这两步。

答案:期望步 极大步

选择题:
1、请选择下面可以应用隐马尔科夫(HMM)模型的选项(   )
A.基因序列数据集
B.电影浏览数据集
C.股票市场数据集
D.所有以上

答案:D

2.下列模型属于机器学习生成式模型的是()
A.朴素贝叶斯
B.隐马尔科夫模型(HMM)
C.马尔科夫随机场(Markov Random Fields)
D.深度信念网络(DBN)
答案:ABCD

3.EM算法用于无监督学习时执行流程为()
A初始化模型参数;迭代求解;迭代终止;模型参数收敛,得到模型参数
B初始化模型参数;模型参数收敛;迭代求解;迭代终止,得到模型参数
C迭代求解;初始化模型参数;迭代终止;模型参数收敛,得到模型参数
D迭代求解;迭代终止;初始化模型参数;模型参数收敛,得到模型参数

答案:A

  1. 给定一个模型,如何计算某个特定的输出序列的概率?
    A.Forward-Backward算法
    B.维特比算法
    C.鲍姆-韦尔奇算法
    D.CNN算法
    答案:A

5.下列关于EM算法的说法中,不正确的是()。
A、EM算法是迭代求解最大值的算法,同时算法在每一次迭代时分为两步,E步和M步。
B、EM算法是为了解决数据缺失情况下的参数估计问题。
C、EM算法中的极大似然估计就是用来估计模型参数的统计学方法。
D、EM算法不可以保证收敛到一个稳定点,即EM算法不是收敛的。
答案:D
(解析:EM算法可以保证收敛到一个稳定点,即EM算法是一定收敛的。)

6.HMM由马尔科夫链和一般随机过程组成,他们分别由( )描述。
A.观察值概率、转移概率
B.转移概率、观察值概率
C.初始概率、转移概率
D、观察值概率、初始概率
答案:B

7.关于极大似然估计(Maximum Likelihood Estimate,MLE),说法正确的是?()
A. MLE 不存在
B. MLE 总是存在
C. 如果 MLE 存在,那么它的解可能不是唯一的
D. 如果 MLE 存在,那么它的解一定是唯一的

答案:C

  1. 孤立词识别中,使用隐马尔科夫模型时需要考虑的三个方面为_______、_______、_______、

答案:求值,解码,训练

  1. 通常来讲,一个隐马尔可夫模型可以用_______、_______、_______来简洁表示

答案:隐含状态转移概率矩阵 A、 观测状态转移概率矩阵 B、 初始状态概率矩阵 π

3:下面选项中,不是HMM语音系统的实现所需要求的是

A.语音信号预处理与特征提取
B.声学模型与模式匹配
C.语言模型与语言处理
D.文本建模与纹理建模
答案:D

  1. 设有N个缸,每个缸中装有很多彩球,球的颜色由一组概率分布描述。实验进行方式如下
    根据初始概率分布,随机选择N个缸中的一个开始实验
### 山东大学人工智能导论课程期末考试复习资料与重点 #### 一、题库的重要性 对于山东大学人工智能导论课程而言,题库在备考过程中扮演着极为重要的角色。该课程的考核方式较为依赖于最终的题库内容,而非日常积累的学习成果[^2]。 #### 二、章节分布及其侧重点 整个教材分为十个章节,其中前六章被认为是核心部分,拥有详细的课程笔记供学生参考;第七至第八章则提供了PPT作为辅助材料,特别强调了评价指标公式的掌握;至于第九章仅提供视频文件(mp4),且在过去两年内并未出现在试之中;最后一章即第十章几乎没有任何官方发布的复习资源,仅有英文文献可供查阅[^3]。 #### 三、具体准备建议 为了更好地应对即将到来的测试,在有限的时间内合理分配精力显得尤为重要: - **优先处理高频考点**:鉴于往年经验表明某些特定领域更容易成为命对象(如大模型架构),应集中力量攻克这些板块; - **熟悉并记忆题库中的典型问**:尽管存在一定的不确定性因素影响实际命中率,但历年真依然是最接近真实场景的有效练习素材之一; - **加强英语阅读理解能力训练**:考虑到试卷中含有一定比例的外语文献解析环节,平时多接触专业术语有助于提高解效率。 ```python # 示例代码用于说明如何高效利用时间进行复习规划 import time def review_plan(days_left, focus_areas): daily_hours = 8 / days_left for day in range(1, days_left + 1): study_time = round(daily_hours * (day), 2) print(f"Day {day}: Spend approximately {study_time} hours on {' and '.join(focus_areas)}.") review_plan(7, ["High-frequency Topics", "Practice Questions from Question Bank"]) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值