使用AI配合,简直是绝了

聊一聊

现在AI技术是越来越盛行,越用越广泛。

AI人工智能的使用,主要还是在于你会不会提问。

能不能将你需要的表达清楚,只有你表达清楚了。

AI才能反馈出来你需要的和想要的结果。

主要还在于你会提问,会问。

今天给大家分享一款AI提示词工具,你不会提问也没问,工具来帮你。

界面

软件介绍

AI模型应用提示词查询工具AI提示词宝典

工具非常简单实用,无需安装,打开即用。

工具自带deepseek,千问AI,华为小艺,问小白AI,跃问AI,当贝AI,知乎直达,秘塔AI,豆包AI,百度AI,文生图AI等等网址。

添加自定义

如果有其他AI也可以添加进来,点击右上角点击+号即可添加进来。

工作类提示词

左侧框是大分类右边是具体分类名称,点击具体分类名称,会弹出对话框,显示提示词说明并复制至剪切板,可以直接到需要的窗口进行粘贴。

输入关键词

工具还支持搜索提示词,在搜索框输入你想要的关键词,建议越简短越好,这样会出来很多类型提供你选择,在右边框找到你需要在的,点击会弹出说明对话框并复制到剪切板,可以直接粘贴使用。

软件工具就介绍到这,每款软件工具都有自身独特的优势,文章只是分享演示部分功能,更多实用、好用的功能,请自行研究!

软件获取

软件下载地址

### AI软件开发中的应用 #### 需求分析阶段的支持 AI工具能够在需求收集过程中通过自然语言处理(NLP)技术解析客户需求文档,自动提取关键信息并识别潜在风险点。这不仅提高了沟通效率,还减少了误解的可能性[^4]。 #### 自动化测试与质量保障 借助机器学习算法,自动化测试框架可以预测哪些功能最有可能现问题,并优先执行相关测试案例。这种基于数据驱动的方法显著提升了缺陷检测率,缩短了回归测试周期[^1]。 #### 代码生成及优化 现代IDE集成了多种AI特性来辅助编码工作,比如智能感知补全、语法错误即时反馈等功能。某些高级平台甚至可以根据描述自动生成初步版本的源码片段,在此基础上由人工进一步完善细节逻辑。 ```python def generate_code_from_description(description): """ This function takes a natural language description and generates Python code. Args: description (str): A textual representation of what the desired functionality should be. Returns: str: Generated python code based on input description. """ pass # Placeholder for actual implementation logic that would involve NLP models to parse descriptions into executable instructions. ``` #### 数据分析与决策支持 利用内置的数据挖掘能力,应用程序可实时监控运行状态并对异常情况进行预警;同时也能深入剖析用户交互模式,为企业战略调整提供科学依据[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值