基于Matlab/Simulink仿真模型 风光储并网发电系统仿真模型 风力发电+光伏发电+储能+三相逆变并网

基于Matlab/Simulink仿真模型
风光储并网发电系统仿真模型 风力发电+光伏发电+储能+三相逆变并网Matlab/Simulink仿真模型

①光伏Boost:采用电导增量法来实现光伏板最大功率跟踪
②风机:拓扑采用三相整流电路,控制采用MPPT控制
③蓄电池储能:采用双向Buck_Boost电路,电压电流双闭环控制策略,电压环稳定直流母线电压800V
④并网逆变器:三相桥式逆变器,采用PQ控制恒功率并网
仿真结果如详情图片所示
Matlab/Simulink仿真模型
在这里插入图片描述


为了实现你所描述的风光储并网发电系统的仿真模型,我们需要在MATLAB/Simulink中构建各个组件,并设置相应的控制策略。下面我将提供一个简化的框架和示例代码来帮助你开始这个项目。请注意,由于Simulink模型包含图形化组件,以下内容主要以指导如何搭建模型为主,并附带一些关键部分的MATLAB脚本。

1. 构建系统模型

光伏Boost电路(采用电导增量法MPPT)
  • 电导增量法MPPT:可以使用MATLAB Function块来实现电导增量算法。
function duty = mpptIncrementalConductance(v_pv, i_pv, v_old, p_old)
    dp = v_pv * i_pv - p_old;
    dv = v_pv - v_old;
    
    if dp == 0
        duty = duty_cycle; % Keep current duty cycle
    elseif (dp > 0 && dv > 0) || (dp < 0 && dv < 0)
        duty_cycle = duty_cycle + step_size; % Increase duty cycle
    else
        duty_cycle = duty_cycle - step_size; % Decrease duty cycle
    end
    
    duty = max(min(duty_cycle, 1), 0); % Ensure duty cycle is within [0, 1]
end
风机(三相整流电路+MPPT控制)
  • 风机模型:可以使用MATLAB/Simulink中的Simscape Electrical库中的元件构建。
  • MPPT控制:类似于光伏MPPT,但可能需要考虑风速变化对输出功率的影响。
蓄电池储能(双向Buck_Boost电路)
  • 双向Buck_Boost电路:同样使用Simscape Electrical库中的元件构建。
  • 电压电流双闭环控制:可以使用PI控制器来稳定直流母线电压和电流。
% Voltage and Current Control for Battery
e_v = V_ref - V_bus;
e_i = I_ref - I_bus;

% PI Controller for Voltage
Kp_v = 1; % Proportional gain for voltage
Ki_v = 0.1; % Integral gain for voltage
u_v = Kp_v * e_v + Ki_v * integral(e_v);

% PI Controller for Current
Kp_i = 1; % Proportional gain for current
Ki_i = 0.1; % Integral gain for current
u_i = Kp_i * e_i + Ki_i * integral(e_i);

% Combine Voltage and Current Control
u = u_v + u_i;

% Limit the output to ensure stability
u = max(min(u, U_max), U_min);
并网逆变器(三相桥式逆变器)
  • PQ控制恒功率并网:可以通过设置参考功率值,并使用适当的控制策略来调整逆变器输出。

2. Simulink 模型搭建步骤

  1. 打开新的Simulink模型

    • 在MATLAB中输入simulink打开Simulink。
  2. 添加模块

    • 添加光伏板、风机、蓄电池等电源模块。
    • 添加Boost电路、整流电路、双向Buck_Boost电路等电力电子模块。
    • 添加三相桥式逆变器。
    • 添加控制模块,如PID控制器、MPPT控制器等。
  3. 配置模块参数

    • 根据你的具体需求配置每个模块的参数,例如电压、电流、频率等。
  4. 连接模块

    • 将电源模块与对应的电力电子模块连接。
    • 连接电力电子模块与控制系统。
    • 确保所有模块之间的信号流正确无误。
  5. 运行仿真

    • 设置合适的仿真时间和步长。
    • 运行仿真并观察结果。

3. 示例代码片段

这里提供的是一个简化版的MATLAB脚本,用于初始化和运行仿真:

% 参数设置
fs = 1000; % 采样频率 (Hz)
t = 0:1/fs:1; % 时间向量

% 初始化模型
open_system('your_simulink_model'); % 打开你的Simulink模型

% 设置模型参数
set_param('your_simulink_model/PV_Panel', 'Irradiance', '1000'); % 设置光照强度
set_param('your_simulink_model/Wind_Turbine', 'WindSpeed', '10'); % 设置风速

% 运行仿真
sim('your_simulink_model');

% 获取仿真结果
result = struct2cell(get_param('your_simulink_model', 'SimulationOutput'));

% 绘制结果
figure;
plot(t, result{1}.signals.values);
title('Simulation Results');
xlabel('Time (s)');
ylabel('Values');
grid on;

结论

上述提供的代码和说明旨在为你提供一个起点,以便你可以根据自己的具体需求构建和调整模型。实际应用中,你可能需要进一步优化模型参数和控制策略,以达到最佳性能。
在这里插入图片描述

为了构建一个完整的风光储并网发电系统的Simulink模型,我将提供一个详细的指南和代码片段。这个系统包括光伏板、风力发电机、储能电池和三相逆变器,并采用相应的控制策略。

1. 光伏Boost电路(采用电导增量法MPPT)

控制算法
function duty = mpptIncrementalConductance(v_pv, i_pv, v_old, p_old)
    dp = v_pv * i_pv - p_old;
    dv = v_pv - v_old;
    
    if abs(dv) < 0.001 % Avoid division by zero
        duty = duty_cycle; % Keep current duty cycle
    elseif (dp > 0 && dv > 0) || (dp < 0 && dv < 0)
        duty_cycle = duty_cycle + step_size; % Increase duty cycle
    else
        duty_cycle = duty_cycle - step_size; % Decrease duty cycle
    end
    
    duty = max(min(duty_cycle, 1), 0); % Ensure duty cycle is within [0, 1]
end
Simulink模型
  • 光伏板:使用Photovoltaic Array模块。
  • Boost变换器:使用DC-DC Boost Converter模块。
  • MPPT控制器:使用MATLAB Function模块实现上述算法。

2. 风力发电机(三相整流电路+MPPT控制)

控制算法
function pitch_angle = mpptWind(v_wind, omega_r, P_ref)
    P_actual = 0.5 * rho * A * v_wind^3 * C_p(omega_r);
    if P_actual < P_ref
        pitch_angle = 0; % No pitch control needed
    else
        pitch_angle = atan((P_actual - P_ref) / (K * omega_r));
    end
end
Simulink模型
  • 风力发电机:使用Wind Turbine模块。
  • 三相整流器:使用Three-Phase Rectifier模块。
  • MPPT控制器:使用MATLAB Function模块实现上述算法。

3. 蓄电池储能(双向Buck_Boost电路)

控制算法
function u = batteryControl(V_bus, V_ref, I_bus, I_ref)
    e_v = V_ref - V_bus;
    e_i = I_ref - I_bus;

    % PI Controller for Voltage
    Kp_v = 1; % Proportional gain for voltage
    Ki_v = 0.1; % Integral gain for voltage
    u_v = Kp_v * e_v + Ki_v * integral(e_v);

    % PI Controller for Current
    Kp_i = 1; % Proportional gain for current
    Ki_i = 0.1; % Integral gain for current
    u_i = Kp_i * e_i + Ki_i * integral(e_i);

    % Combine Voltage and Current Control
    u = u_v + u_i;

    % Limit the output to ensure stability
    u = max(min(u, U_max), U_min);
end
Simulink模型
  • 蓄电池:使用Battery模块。
  • 双向Buck_Boost变换器:使用Bidirectional Buck-Boost Converter模块。
  • 电压电流双闭环控制:使用PI控制器模块。

4. 并网逆变器(三相桥式逆变器)

控制算法
function Sabc = pqControl(P_ref, Q_ref, Vabc, Iabc)
    % Convert to dq frame
    [Vd, Vq] = abc2dq(Vabc);
    [Id, Iq] = abc2dq(Iabc);

    % Calculate errors
    ed = P_ref / Vd - Id;
    eq = Q_ref / Vq - Iq;

    % PI Controller for d-axis
    Kp_d = 1; % Proportional gain for d-axis
    Ki_d = 0.1; % Integral gain for d-axis
    ud = Kp_d * ed + Ki_d * integral(ed);

    % PI Controller for q-axis
    Kp_q = 1; % Proportional gain for q-axis
    Ki_q = 0.1; % Integral gain for q-axis
    uq = Kp_q * eq + Ki_q * integral(eq);

    % Convert back to abc frame
    Sabc = dq2abc([ud, uq]);
end
Simulink模型
  • 三相桥式逆变器:使用Three-Phase Bridge模块。
  • PQ控制:使用MATLAB Function模块实现上述算法。

5. 整体系统集成

MATLAB脚本
% 参数设置
fs = 1000; % 采样频率 (Hz)
t = 0:1/fs:1; % 时间向量

% 初始化模型
open_system('your_simulink_model'); % 打开你的Simulink模型

% 设置模型参数
set_param('your_simulink_model/PV_Panel', 'Irradiance', '1000'); % 设置光照强度
set_param('your_simulink_model/Wind_Turbine', 'WindSpeed', '10'); % 设置风速

% 运行仿真
sim('your_simulink_model');

% 获取仿真结果
result = struct2cell(get_param('your_simulink_model', 'SimulationOutput'));

% 绘制结果
figure;
plot(t, result{1}.signals.values);
title('Simulation Results');
xlabel('Time (s)');
ylabel('Values');
grid on;

结论

上述提供的代码和说明旨在为你提供一个起点,以便你可以根据自己的具体需求构建和调整模型。实际应用中,你可能需要进一步优化模型参数和控制策略,以达到最佳性能在这里插入图片描述
为了构建一个完整的风光储并网发电系统的Simulink模型,并提供相应的控制策略代码,我将详细说明每个部分的实现方法。以下是一个简化版的示例代码和模型搭建步骤。

1. 光伏Boost电路(采用电导增量法MPPT)

控制算法
function duty = mpptIncrementalConductance(v_pv, i_pv, v_old, p_old)
    dp = v_pv * i_pv - p_old;
    dv = v_pv - v_old;
    
    if abs(dv) < 0.001 % Avoid division by zero
        duty = duty_cycle; % Keep current duty cycle
    elseif (dp > 0 && dv > 0) || (dp < 0 && dv < 0)
        duty_cycle = duty_cycle + step_size; % Increase duty cycle
    else
        duty_cycle = duty_cycle - step_size; % Decrease duty cycle
    end
    
    duty = max(min(duty_cycle, 1), 0); % Ensure duty cycle is within [0, 1]
end
Simulink模型
  • 光伏板:使用Photovoltaic Array模块。
  • Boost变换器:使用DC-DC Boost Converter模块。
  • MPPT控制器:使用MATLAB Function模块实现上述算法。

2. 风力发电机(三相整流电路+MPPT控制)

控制算法
function pitch_angle = mpptWind(v_wind, omega_r, P_ref)
    P_actual = 0.5 * rho * A * v_wind^3 * C_p(omega_r);
    if P_actual < P_ref
        pitch_angle = 0; % No pitch control needed
    else
        pitch_angle = atan((P_actual - P_ref) / (K * omega_r));
    end
end
Simulink模型
  • 风力发电机:使用Wind Turbine模块。
  • 三相整流器:使用Three-Phase Rectifier模块。
  • MPPT控制器:使用MATLAB Function模块实现上述算法。

3. 蓄电池储能(双向Buck_Boost电路)

控制算法
function u = batteryControl(V_bus, V_ref, I_bus, I_ref)
    e_v = V_ref - V_bus;
    e_i = I_ref - I_bus;

    % PI Controller for Voltage
    Kp_v = 1; % Proportional gain for voltage
    Ki_v = 0.1; % Integral gain for voltage
    u_v = Kp_v * e_v + Ki_v * integral(e_v);

    % PI Controller for Current
    Kp_i = 1; % Proportional gain for current
    Ki_i = 0.1; % Integral gain for current
    u_i = Kp_i * e_i + Ki_i * integral(e_i);

    % Combine Voltage and Current Control
    u = u_v + u_i;

    % Limit the output to ensure stability
    u = max(min(u, U_max), U_min);
end
Simulink模型
  • 蓄电池:使用Battery模块。
  • 双向Buck_Boost变换器:使用Bidirectional Buck-Boost Converter模块。
  • 电压电流双闭环控制:使用PI控制器模块。

4. 并网逆变器(三相桥式逆变器)

控制算法
function Sabc = pqControl(P_ref, Q_ref, Vabc, Iabc)
    % Convert to dq frame
    [Vd, Vq] = abc2dq(Vabc);
    [Id, Iq] = abc2dq(Iabc);

    % Calculate errors
    ed = P_ref / Vd - Id;
    eq = Q_ref / Vq - Iq;

    % PI Controller for d-axis
    Kp_d = 1; % Proportional gain for d-axis
    Ki_d = 0.1; % Integral gain for d-axis
    ud = Kp_d * ed + Ki_d * integral(ed);

    % PI Controller for q-axis
    Kp_q = 1; % Proportional gain for q-axis
    Ki_q = 0.1; % Integral gain for q-axis
    uq = Kp_q * eq + Ki_q * integral(eq);

    % Convert back to abc frame
    Sabc = dq2abc([ud, uq]);
end
Simulink模型
  • 三相桥式逆变器:使用Three-Phase Bridge模块。
  • PQ控制:使用MATLAB Function模块实现上述算法。

5. 整体系统集成

MATLAB脚本
% 参数设置
fs = 1000; % 采样频率 (Hz)
t = 0:1/fs:1; % 时间向量

% 初始化模型
open_system('your_simulink_model'); % 打开你的Simulink模型

% 设置模型参数
set_param('your_simulink_model/PV_Panel', 'Irradiance', '1000'); % 设置光照强度
set_param('your_simulink_model/Wind_Turbine', 'WindSpeed', '10'); % 设置风速

% 运行仿真
sim('your_simulink_model');

% 获取仿真结果
result = struct2cell(get_param('your_simulink_model', 'SimulationOutput'));

% 绘制结果
figure;
plot(t, result{1}.signals.values);
title('Simulation Results');
xlabel('Time (s)');
ylabel('Values');
grid on;

6. 示例代码片段

以下是具体的Simulink模型搭建步骤:

  1. 打开新的Simulink模型

    open_system('new_model');
    
  2. 添加模块

    add_block('simulink/Sources/Step', 'new_model/Step_Source');
    add_block('simulink/Sinks/Scope', 'new_model/Scope_Output');
    
  3. 配置模块参数

    set_param('new_model/Step_Source', 'Amplitude', '1');
    set_param('new_model/Scope_Output', 'Position', '[100 100]');
    
  4. 连接模块

    connect('new_model/Step_Source', 'new_model/Scope_Output');
    
  5. 运行仿真

    sim('new_model');
    
  6. 获取仿真结果

    result = struct2cell(get_param('new_model', 'SimulationOutput'));
    figure;
    plot(result{1}.signals.values);
    title('Simulation Results');
    xlabel('Time (s)');
    ylabel('Values');
    grid on;
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值