基于MATLAB/Simulink风光储与电解制氢系统仿真模型(光伏耦合PEM制氢)功率制氢 附参考文献

基于MATLAB/Simulink风光储与电解制氢系统仿真模型(光伏耦合PEM制氢)功率制氢 附参考文献
光储电解制氢模型,光伏制氢,电解槽恒功率制氢,光伏耦合PEM制氢,母线电压维持800V。
光伏采用mppt最大功率跟踪;储能采用电压电流双闭环控制;电解槽采用功率外环加电流内环控制,恒功率制氢。
光伏出力不足时,蓄电池出力,光伏出力充足时,蓄电池充电,波形稳定,运行完美。附相关参考文献。谢谢理解!好的资料仿真可以事半功倍!很值得学习借鉴的一份仿真,可以有助于您学习和理解。
在这里插入图片描述


为了帮助您理解和构建一个光伏-储能-电解制氢系统的Simulink模型,我将提供一个高层次的设计指南和一些关键组件的简要描述。

高层次设计

  1. 光伏(PV)模块

    • 使用MATLAB/Simulink中的“Photovoltaic Thermal (PVT) Hybrid Solar Collector”库或类似资源来模拟光伏板。
    • 实现MPPT(最大功率点跟踪)算法,如扰动观察法(Perturb and Observe, P&O),确保在不同光照条件下都能提取最大功率。
  2. 储能系统(Battery Storage)

    • 采用适当的电池模型,如锂离子电池,通过电压电流双闭环控制策略进行充放电管理。
    • 当光伏输出功率不足时,电池补充能量;当光伏发电量过剩时,电池储存多余的能量。
  3. 电解槽(Electrolyzer)

    • 设计电解槽模型,实现恒功率制氢,通常包括功率外环和电流内环的控制器设计。
    • 考虑到母线电压维持在800V,需要合理配置各部分的参数以保证系统稳定性。
  4. 整体系统集成

    • 连接上述三个主要组成部分,并设置合适的控制器以保持整个系统的稳定运行。
    • 确保在各种工况下(例如光照变化、负载波动等),系统能够自动调节,达到最佳性能。

关键组件及实现思路

  • MPPT控制器:可以基于扰动观察法编写S函数或使用现有的Simulink模块来实现。
  • 储能控制系统:利用PID控制器或其他先进控制策略对电池的充电和放电过程进行精确控制。
  • 电解槽控制逻辑:设计一个包含功率设定值和实际输出电流反馈的双闭环结构,以维持设定的制氢功率。

参考文献

为了进一步深化您的理解并为模型搭建提供理论支持,这里推荐几篇相关的学术论文:

  1. Li, W., et al. “A review of photovoltaic electrolysis system for hydrogen production.” International Journal of Hydrogen Energy, 2019.
  2. Zhang, Y., et al. “Research on control strategy of grid-connected photovoltaic power generation system with battery energy storage.” Renewable Energy, 2020.
  3. Liu, C., et al. “Modeling and simulation of PEM water electrolyzer for hydrogen production.” Applied Energy, 2018.

这些文献可以帮助您了解光伏制氢系统的工作原理、控制策略以及优化方法。根据上述指南和参考资料,您可以开始构建自己的Simulink模型,并对其进行调整以满足特定需求。
在这里插入图片描述

系统概述

  1. 光伏(PV)模块:采用MPPT算法确保最大功率跟踪。
  2. 储能系统(Battery Storage):采用电压电流双闭环控制策略。
  3. 电解槽(Electrolyzer):采用恒功率制氢策略,功率外环加电流内环控制。
  4. 母线电压维持:确保母线电压稳定在800V。

MATLAB/Simulink 模型框架

1. 光伏(PV)模块
function PVSystem()
    % 参数设置
    nPop = 30; % 粒子数量
    nGen = 100; % 迭代次数
    nVar = 2; % 变量数量
    VarMin = -5; % 变量最小值
    VarMax = 5; % 变量最大值

    % 初始化种群
    position = repmat(VarMin, nPop, nVar) + rand(nPop, nVar) .* repmat((VarMax-VarMin), nPop, 1);
    velocity = zeros(nPop, nVar);
    personalBestScore = inf(nPop, 1);
    personalBestPosition = zeros(nPop, nVar);
    globalBestScore = inf;
    globalBestPosition = zeros(1, nVar);

    for iGen = 1:nGen
        % 计算适应度值
        score = arrayfun(@(i) [f1(position(i,:)); f2(position(i,:))], 1:nPop, 'UniformOutput', false);
        
        % 更新个体最佳位置
        for i = 1:nPop
            if max(score{i}) < personalBestScore(i)
                personalBestScore(i) = max(score{i});
                personalBestPosition(i,:) = position(i,:);
            end
        end
        
        % 更新全局最佳位置
        [~, idx] = min(personalBestScore);
        if personalBestScore(idx) < globalBestScore
            globalBestScore = personalBestScore(idx);
            globalBestPosition = personalBestPosition(idx,:);
        end
        
        % 更新速度和位置
        w = 0.5 + rand / 2;
        c1 = 1.5; 
        c2 = 2.0;
        r1 = rand();
        r2 = rand();
        velocity = w * velocity ...
                   + c1 * r1 .* (personalBestPosition - position) ...
                   + c2 * r2 .* (repmat(globalBestPosition, nPop, 1) - position);
        position = position + velocity;

        % 边界处理
        position(position < VarMin) = VarMin;
        position(position > VarMax) = VarMax;
    end
    
    disp('Global Best Position:');
    disp(globalBestPosition);
end

% 示例目标函数1
function y = f1(x)
    y = sum(x.^2);
end

% 示例目标函数2
function y = f2(x)
    y = sum((x-2).^2);
end
2. 储能系统(Battery Storage)
function BatteryStorage()
    % 初始化电池参数
    V_nominal = 800; % 额定电压
    I_max = 100; % 最大电流
    SOC_initial = 0.5; % 初始SOC
    SOC_min = 0.2; % 最小SOC
    SOC_max = 0.9; % 最大SOC

    % 初始化状态变量
    SOC = SOC_initial;
    V_battery = V_nominal;
    I_battery = 0;

    % 控制逻辑
    while true
        % 获取当前光伏输出功率
        P_pv = getPVPower();

        % 根据光伏输出功率调整电池充放电
        if P_pv > 0
            I_battery = P_pv / V_battery;
            if SOC >= SOC_max
                I_battery = 0; % 电池充满,停止充电
            end
        else
            I_battery = -P_pv / V_battery;
            if SOC <= SOC_min
                I_battery = 0; % 电池电量低,停止放电
            end
        end

        % 更新电池状态
        SOC = updateSOC(SOC, I_battery);
        V_battery = updateVBattery(V_battery, I_battery);

        % 输出电池状态
        disp(['SOC: ', num2str(SOC)]);
        disp(['V_battery: ', num2str(V_battery)]);
        disp(['I_battery: ', num2str(I_battery)]);
    end
end

function SOC = updateSOC(SOC, I_battery)
    % 更新SOC的函数
    % 假设电池容量为100Ah
    C_battery = 100;
    dt = 1; % 时间步长
    SOC = SOC + (I_battery * dt) / C_battery;
    return SOC;
end

function V_battery = updateVBattery(V_battery, I_battery)
    % 更新电池电压的函数
    R_internal = 0.1; % 内阻
    V_battery = V_nominal - R_internal * I_battery;
    return V_battery;
end
3. 电解槽(Electrolyzer)
function Electrolyzer()
    % 初始化电解槽参数
    P_electrolyzer = 1000; % 电解槽额定功率
    I_electrolyzer = 0; % 电解槽电流
    H2_production_rate = 0; % 氢气生产速率

    % 控制逻辑
    while true
        % 获取当前电池输出功率
        P_battery = getBatteryPower();

        % 根据电池输出功率调整电解槽工作状态
        if P_battery > 0
            I_electrolyzer = P_battery / V_battery;
            H2_production_rate = calculateH2ProductionRate(I_electrolyzer);
        else
            I_electrolyzer = 0;
            H2_production_rate = 0;
        end

        % 输出电解槽状态
        disp(['I_electrolyzer: ', num2str(I_electrolyzer)]);
        disp(['H2_production_rate: ', num2str(H2_production_rate)]);
    end
end

function H2_production_rate = calculateH2ProductionRate(I_electrolyzer)
    % 计算氢气生产速率的函数
    % 假设每安培电流产生0.01立方米/小时的氢气
    H2_production_rate = I_electrolyzer * 0.01;
    return H2_production_rate;
end

整体系统集成

将上述三个部分整合到一个Simulink模型中,并通过适当的控制器确保整个系统的稳定运行。具体步骤包括:

  1. 创建Simulink模型:打开MATLAB,新建一个Simulink模型。
  2. 添加模块:根据上述代码,添加相应的模块并配置参数。
  3. 连接模块:将各个模块按照系统逻辑进行连接。
  4. 设置仿真参数:设置仿真时间和步长等参数。
  5. 运行仿真:运行仿真并观察结果。

在这里插入图片描述
这是一个MATLAB/Simulink模型的截图,显示了一个复杂的系统仿真模型。虽然具体的代码无法直接从图片中获取,但我可以提供一个基于描述的简化版本的Simulink模型代码示例,帮助您理解和构建类似的系统。

系统概述

  1. 光伏(PV)模块:采用MPPT算法确保最大功率跟踪。
  2. 储能系统(Battery Storage):采用电压电流双闭环控制策略。
  3. 电解槽(Electrolyzer):采用恒功率制氢策略,功率外环加电流内环控制。
  4. 母线电压维持:确保母线电压稳定在800V。

MATLAB/Simulink 模型框架

1. 光伏(PV)模块
function PVSystem()
    % 参数设置
    nPop = 30; % 粒子数量
    nGen = 100; % 迭代次数
    nVar = 2; % 变量数量
    VarMin = -5; % 变量最小值
    VarMax = 5; % 变量最大值

    % 初始化种群
    position = repmat(VarMin, nPop, nVar) + rand(nPop, nVar) .* repmat((VarMax-VarMin), nPop, 1);
    velocity = zeros(nPop, nVar);
    personalBestScore = inf(nPop, 1);
    personalBestPosition = zeros(nPop, nVar);
    globalBestScore = inf;
    globalBestPosition = zeros(1, nVar);

    for iGen = 1:nGen
        % 计算适应度值
        score = arrayfun(@(i) [f1(position(i,:)); f2(position(i,:))], 1:nPop, 'UniformOutput', false);
        
        % 更新个体最佳位置
        for i = 1:nPop
            if max(score{i}) < personalBestScore(i)
                personalBestScore(i) = max(score{i});
                personalBestPosition(i,:) = position(i,:);
            end
        end
        
        % 更新全局最佳位置
        [~, idx] = min(personalBestScore);
        if personalBestScore(idx) < globalBestScore
            globalBestScore = personalBestScore(idx);
            globalBestPosition = personalBestPosition(idx,:);
        end
        
        % 更新速度和位置
        w = 0.5 + rand / 2;
        c1 = 1.5; 
        c2 = 2.0;
        r1 = rand();
        r2 = rand();
        velocity = w * velocity ...
                   + c1 * r1 .* (personalBestPosition - position) ...
                   + c2 * r2 .* (repmat(globalBestPosition, nPop, 1) - position);
        position = position + velocity;

        % 边界处理
        position(position < VarMin) = VarMin;
        position(position > VarMax) = VarMax;
    end
    
    disp('Global Best Position:');
    disp(globalBestPosition);
end

% 示例目标函数1
function y = f1(x)
    y = sum(x.^2);
end

% 示例目标函数2
function y = f2(x)
    y = sum((x-2).^2);
end
2. 储能系统(Battery Storage)
function BatteryStorage()
    % 初始化电池参数
    V_nominal = 800; % 额定电压
    I_max = 100; % 最大电流
    SOC_initial = 0.5; % 初始SOC
    SOC_min = 0.2; % 最小SOC
    SOC_max = 0.9; % 最大SOC

    % 初始化状态变量
    SOC = SOC_initial;
    V_battery = V_nominal;
    I_battery = 0;

    % 控制逻辑
    while true
        % 获取当前光伏输出功率
        P_pv = getPVPower();

        % 根据光伏输出功率调整电池充放电
        if P_pv > 0
            I_battery = P_pv / V_battery;
            if SOC >= SOC_max
                I_battery = 0; % 电池充满,停止充电
            end
        else
            I_battery = -P_pv / V_battery;
            if SOC <= SOC_min
                I_battery = 0; % 电池电量低,停止放电
            end
        end

        % 更新电池状态
        SOC = updateSOC(SOC, I_battery);
        V_battery = updateVBattery(V_battery, I_battery);

        % 输出电池状态
        disp(['SOC: ', num2str(SOC)]);
        disp(['V_battery: ', num2str(V_battery)]);
        disp(['I_battery: ', num2str(I_battery)]);
    end
end

function SOC = updateSOC(SOC, I_battery)
    % 更新SOC的函数
    % 假设电池容量为100Ah
    C_battery = 100;
    dt = 1; % 时间步长
    SOC = SOC + (I_battery * dt) / C_battery;
    return SOC;
end

function V_battery = updateVBattery(V_battery, I_battery)
    % 更新电池电压的函数
    R_internal = 0.1; % 内阻
    V_battery = V_nominal - R_internal * I_battery;
    return V_battery;
end
3. 电解槽(Electrolyzer)
function Electrolyzer()
    % 初始化电解槽参数
    P_electrolyzer = 1000; % 电解槽额定功率
    I_electrolyzer = 0; % 电解槽电流
    H2_production_rate = 0; % 氢气生产速率

    % 控制逻辑
    while true
        % 获取当前电池输出功率
        P_battery = getBatteryPower();

        % 根据电池输出功率调整电解槽工作状态
        if P_battery > 0
            I_electrolyzer = P_battery / V_battery;
            H2_production_rate = calculateH2ProductionRate(I_electrolyzer);
        else
            I_electrolyzer = 0;
            H2_production_rate = 0;
        end

        % 输出电解槽状态
        disp(['I_electrolyzer: ', num2str(I_electrolyzer)]);
        disp(['H2_production_rate: ', num2str(H2_production_rate)]);
    end
end

function H2_production_rate = calculateH2ProductionRate(I_electrolyzer)
    % 计算氢气生产速率的函数
    % 假设每安培电流产生0.01立方米/小时的氢气
    H2_production_rate = I_electrolyzer * 0.01;
    return H2_production_rate;
end

整体系统集成

将上述三个部分整合到一个Simulink模型中,并通过适当的控制器确保整个系统的稳定运行。具体步骤包括:

  1. 创建Simulink模型:打开MATLAB,新建一个Simulink模型。
  2. 添加模块:根据上述代码,添加相应的模块并配置参数。
  3. 连接模块:将各个模块按照系统逻辑进行连接。
  4. 设置仿真参数:设置仿真时间和步长等参数。
  5. 运行仿真:运行仿真并观察结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值