【深度学习入门基于Python的理论与实现

深度学习入门基于Python的理论与实现
高清无水印,附源代码、学习软件(用于运行脚本)
该教程包含Python编程基础、神经网络、卷积网络、深度学习等内容。以较为基础的Python语言去实现网络的正向与反向传播,是非常不错的深度学习/神经网络入门学习资料。

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
这本书是《深度学习入门:基于Python的理论与实现》(Deep Learning from Scratch),由日本作者斋藤康毅(Sebastian Raschka)编写,陆宇杰翻译。以下是这本书的简要介绍:

书籍简介

这本书是一本面向初学者的深度学习入门指南,旨在帮助读者理解深度学习的基本概念和原理,并通过实际编程练习来加深理解。书中使用Python语言进行示例代码的编写,适合对深度学习感兴趣的程序员、数据科学家以及相关领域的学生。

主要内容

  1. 基础知识:从线性代数、概率论和信息论等数学基础开始,逐步引入深度学习的相关概念。
  2. 神经网络:详细介绍神经网络的基本结构和工作原理,包括前向传播和反向传播算法。
  3. 深度学习模型:涵盖卷积神经网络(CNN)、循环神经网络(RNN)等多种深度学习模型的理论和实现。
  4. 实战项目:通过多个实战项目,让读者能够亲手构建和训练深度学习模型,解决实际问题。
  5. 工具和框架:介绍常用的深度学习框架如TensorFlow、Keras等,并提供使用这些框架的实际案例。

适用对象

  • 对深度学习感兴趣但缺乏系统学习的程序员和技术爱好者。
  • 想要深入了解深度学习理论并进行实践的大学生或研究生。
  • 数据科学家和机器学习工程师,希望通过本书巩固和扩展自己的知识体系。

特点

  • 理论与实践结合:不仅讲解理论知识,还提供了大量的代码示例,帮助读者通过编程实践来理解和掌握深度学习技术。
  • 循序渐进:从基础到高级,逐步深入,适合不同层次的学习者。
  • 丰富的资源:附带了大量的代码和数据集,方便读者进行实验和练习。

出版信息

  • 出版社:人民邮电出版社
  • 系列:图灵程序设计丛书
  • 作者:斋藤康毅
  • 译者:陆宇杰

这本书是一本非常适合初学者的深度学习入门读物,通过它,你可以系统地学习深度学习的基础知识,并通过实践来提升自己的技能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值