基于matlab的以图搜图技术【有报告】
图像检索的可视特征如颜色特征、 纹理结构、 边缘轮廓、 位置 关系等作为图像内容来进行匹配查找,利用已有的模式识别算法进行相似度计算 , 实现目标检索
matlab代码
基于 MATLAB 的以图搜图系统实现的代码示例。该系统通过提取图像特征并计算相似度来实现以图搜图功能。
实现步骤
-
数据集准备:
- 准备一个包含多张图片的数据集(如 JPEG 格式)。
- 使用 MATLAB 的
imageDatastore
加载图片。
-
特征提取:
- 使用预训练的卷积神经网络(如 AlexNet 或 VGG16)提取图像特征。
-
相似度计算:
- 通过计算查询图像与数据库中图像特征之间的欧氏距离或余弦相似度,找到最相似的图片。
-
结果显示:
- 显示查询结果和最相似图片。
—
MATLAB代码实现
% 基于MATLAB的以图搜图系统
% 清空工作区
clear; clc;
% 1. 数据集准备
datasetPath = fullfile(pwd, 'images'); % 图片文件夹路径
imds = imageDatastore(datasetPath, 'IncludeSubfolders', true, 'LabelSource', 'foldernames');
% 2. 加载预训练模型 (AlexNet)
net = alexnet;
% 3. 提取图像特征
fprintf('正在提取图像特征...\n');
features = activations(net, imds.Files, 'fc7', 'OutputAs', 'rows');
% 4. 查询图像
queryImagePath = fullfile(pwd, 'query.jpg'); % 查询图片路径
queryImage = imread(queryImagePath);
imshow(queryImage);
title('查询图片');
pause(1);
% 提取查询图片特征
queryFeature = activations(net, queryImage, 'fc7', 'OutputAs', 'rows');
% 5. 计算相似度 (使用欧氏距离)
distances = sqrt(sum((features - queryFeature).^2, 2));
% 找到最相似的图片索引
[~, sortedIdx] = sort(distances);
topMatchIdx = sortedIdx(1); % 最相似的图片索引
% 6. 显示结果
figure;
subplot(1, 2, 1);
imshow(queryImage);
title('查询图片');
subplot(1, 2, 2);
matchedImage = imread(imds.Files{topMatchIdx});
imshow(matchedImage);
title('最相似图片');
fprintf('查询完成!\n');
代码说明
-
数据集加载:
- 使用
imageDatastore
加载图片文件夹中的所有图片。 - 确保图片文件夹中包含多个子文件夹,每个子文件夹代表一类图片。
- 使用
-
预训练模型:
- 使用 MATLAB 内置的
alexnet
模型提取图像特征。 - 如果需要更高的精度,可以替换为其他预训练模型(如
vgg16
或resnet50
)。
- 使用 MATLAB 内置的
-
特征提取:
- 通过
activations
函数提取图像在网络某一层(如fc7
层)的特征向量。 - 特征向量用于表示图像的内容。
- 通过
-
相似度计算:
- 使用欧氏距离计算查询图片与数据库中每张图片的相似度。
- 距离越小,表示两张图片越相似。
-
结果显示:
- 显示查询图片和最相似图片。
运行环境
- MATLAB R2021a 或更高版本。
- 需要安装 Deep Learning Toolbox 和预训练模型支持包。
可以通过以下命令安装预训练模型支持包:
% 安装AlexNet支持包
if ~exist('alexnet', 'file')
installDeepLearningModel('alexnet');
end
示例文件夹结构
project/
│
├── images/ % 数据集文件夹
│ ├── cat/ % 子文件夹,存放类别1的图片
│ │ ├── img1.jpg
│ │ ├── img2.jpg
│ │ └── ...
│ └── dog/ % 子文件夹,存放类别2的图片
│ ├── img1.jpg
│ ├── img2.jpg
│ └── ...
│
└── query.jpg % 查询图片
运行结果
- 程序会显示查询图片和数据库中最相似的图片。
- 如果数据集较大,可以在
imageDatastore
中设置批量处理参数以提高效率。