3D图像生成模型:从原理到实践

在当今的图像生成领域,3D图像生成模型正逐渐崭露头角。这类模型通常通过明确控制3D相机姿态来实现图像生成。然而,由于大规模3D数据集的稀缺,大多数3D模型不得不依赖2D图像数据集。目前,扩散模型是图像生成领域的先进架构,但生成3D数据仍是一项艰巨的任务。

面临的挑战与应对策略

造成生成3D数据困难的原因主要有两个:一是缺乏充足的3D资产数据集,二是从扩散模型生成一组相关图像的复杂性。为解决这些问题,相关研究提出将集合生成任务视为一个顺序的无条件 - 条件生成过程。具体做法是,首先使用无条件扩散模型对实例的初始视图进行采样,然后以先前视图为条件迭代采样其他视图。

同时,为应对多视图数据不足的挑战,研究人员通过单目深度估计技术,将深度信息附加到图像数据上以创建新图像。除了添加深度信息,还实施了额外的数据增强策略来提高生成质量。

扩散模型概述

扩散模型的训练过程包含正向加噪和反向去噪两个阶段。在正向过程中,模型以线性方式向训练数据添加固定量的高斯噪声;而在反向过程中,模型预测给定输入数据中添加的噪声量,并减去预测噪声以恢复更“干净”的图像。在推理阶段,去噪网络采用反向去噪过程来恢复图像样本。条件扩散模型使用相同的网络,但还会为目标数据分布添加一个条件

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值