在Python生态系统里,Apache Airflow已然成为管道编排事实上的标准库。与类似解决方案相比,它凭借简洁性和可扩展性赢得了广泛青睐。
为何及何时选用Airflow
设想搭建一个机器学习管道,步骤可能包含从云存储读取图像数据集、处理图像、用下载的图像训练深度学习模型、上传训练好的模型到云端,以及部署模型。若用Cron作业调度和自动化此工作流,虽简单却存在诸多问题,尤其是无法有效扩展。而Airflow能轻松调度和扩展复杂管道,失败后可自动重新运行,还能管理依赖关系,并通过日志和仪表板进行监控。
Airflow基础概念
- 什么是Airflow:它是用于编写、调度和监控管道的工具,是ETL和MLOps用例的理想之选。比如从多个源提取数据、聚合、转换后存储到数据仓库;从数据中提取见解并展示在分析仪表板;训练、验证和部署机器学习模型等。
- 关键组件
- Webserver:作为用户界面,无需CLI或API就能与Airflow交互,执行和监控管道、创建与外部系统的连接、检查数据集等。
- Executor:是管道运行的机制,有多种类型,可在本地单机或分布式运行管道&#