多模态 Mamba 技术突破传统 Transformer 的二次复杂度瓶颈,实现线性计算效率,推动长序列建模在机器人、医疗等领域的跨越式发展。
其通过渐进式蒸馏技术将视觉、语言等多模态信息深度融合,显著提升模型推理速度与资源利用率,为 AI 从实验室走向规模化应用奠定了坚实基础。
该技术使多模态 AI 在边缘设备与实时场景中部署成为可能,大幅降低硬件门槛,加速智能家居、医疗诊断、工业机器人等领域的智能化升级,推动 AI 普惠化进程。
我整理了5种【多模态 Mamba 】的相关论文,全部论文PDF版可以关注工棕号{AI爱因斯坦}
回复 “多模态 ”领取~
1.ML-Mamba:EfficientMulti-Modal Large Language Model Utilizing Mamba-2
文章提出 ML - Mamba 模型,利用 Mamba - 2 解决多模态学习任务,通过实验验证其性能,探索了模型组件影响,为多模态大语言模型发展提供新思路。
-
创新点
1.提出 ML - Mamba 模型,将 Mamba - 2 应用于多模态学习,相比基于 Mamba 的模型,推理性能和效果更优。
2.探索并提出 Mamba - 2 Scan Connector (MSC),增强模型对视觉信息的处理和特征表达能力。
3.基于线性计算复杂度的 Mamba - 2 构建模型,解决现有多模态大语言模型效率瓶颈问题。
-
研究结论
1.ML - Mamba 在多模态基准测试中表现良好,证明了模型有效性和 Mamba - 2 在多模态学习中的潜力。
2.模型解决了现有模型效率瓶颈,计算效率显著提高,在视觉错觉和空间关系判断任务中表现出色。
3.ML - Mamba 存在依赖特定数据集、在移动设备运行有挑战等局限,未来需优化改进。
全部论文PDF版可以关注工棕号{AI爱因斯坦}
回复 “多模态 ”领取~
2.Cobra: Extending Mamba to Multi-Modal Large Language Model for Efficient
Inference
本文提出了Cobra,一种基于Mamba语言模型的多模态大语言模型(MLLM),旨在解决现有Transformer模型在计算效率上的瓶颈。
Cobra通过线性计算复杂度的设计,显著提升了模型的推理速度,并在多个视觉-语言任务中表现出色。
-
创新点
1.引入Mamba语言模型作为基础,实现了线性计算复杂度的多模态大语言模型。
2.探索了多种模态融合方案,优化了视觉与语言信息的整合。
3.在多个基准测试中,Cobra以较少的参数实现了与LLaVA等大模型相当的性能。
-
研究结论
1.Cobra在多个视觉-语言任务中表现出色,尤其在空间关系判断和视觉幻觉克服方面表现优异。
2.Cobra的推理速度显著优于现有的Transformer模型,提升了3-4倍。
3.Cobra以较少的参数实现了与LLaVA等大模型相当的性能,展示了其在高效多模态模型中的潜力。
全部论文PDF版可以关注工棕号{AI爱因斯坦}
回复 “多模态 ”领取~
3.Vision Mamba: Efficient Visual Representation Learning with Bidirectional StateSpace Model
本文提出了Vision Mamba (Vim),一种基于双向状态空间模型(SSM)的高效视觉表示学习方法。Vim通过引入位置嵌入和双向SSM,克服了传统Transformer在处理高分辨率图像时的计算和内存瓶颈.
展示了在ImageNet分类、COCO目标检测和ADE20k语义分割任务中的优越性能。
-
创新点
1.提出了Vision Mamba (Vim),首次将双向状态空间模型应用于视觉任务,实现了数据依赖的全局视觉上下文建模。
2.通过位置嵌入增强了模型的空间感知能力,使其在密集预测任务中表现更佳。
3.Vim在不依赖自注意力机制的情况下,实现了与Transformer相当的建模能力,同时具有次二次时间复杂度和线性内存复杂度。
-
研究结论
1.Vim在ImageNet分类任务上表现优于DeiT,且在处理高分辨率图像时具有更高的计算和内存效率。
2.在COCO目标检测和ADE20k语义分割任务中,Vim显著优于DeiT,展示了其在密集预测任务中的优势。
3.Vim的线性扩展性能使其能够处理高分辨率图像,适合长序列多模态应用。
全部论文PDF版可以关注工棕号{AI爱因斯坦}
回复 “多模态 ”领取~
顶会投稿交流群来啦!
欢迎大家加入顶会投稿交流群一起交流~这里会实时更新AI领域最新资讯、顶会最新动态等信息~