Graph GNN 大显身手:多领域突破,引领技术新变革!

近年来,图神经网络(GNN)在多领域广泛应用,如在语音情感识别、点云语义分割、图像融合等任务中取得进展,提升了模型性能与效率,推动了相关领域发展。

提出新视角与框架,统一 GNN 拓扑设计,自适应设计提升性能;构建视频图结构,融合多模态特征,引入语义边降低成本。最后设计图交互模块与 leader 节点,实现跨模态交互与信息传递。

图神经网络(GNN)助力多领域任务精度提升,为实际应用提供更强大的技术支持 。

我整理了9【特征融合GNN】的相关论文,全部论文PDF版可以关注工棕号{AI爱因斯坦}

回复  “多模态 ”领取~

1.Collaborative filtering based on GNN with attribute fusion and broad attention

本文提出了一种基于图神经网络(GNN)的协同过滤方法GNN-A²,通过属性融合和广泛注意力机制,解决了现有GNN模型在属性聚合和高阶交互信息利用上的不足,显著提升了推荐系统的性能。

  • 创新点

1引入自注意力机制,为内部交互属性分配不同权重,提升特征学习的表达能力。

2.提出属性融合策略,通过余弦相似度计算用户属性和物品属性的相关性,进行加权聚合。

3.设计了广泛注意力交叉模块,动态评估高阶特征交互的贡献,提升模型的预测精度和泛化能力。

  • 研究结论

1.GNN-A²在NDCG@10指标上表现最优,相比现有模型有显著提升。

2.自注意力机制、属性融合模块和广泛注意力交叉模块均对模型性能有积极贡献。

3.模型在处理稀疏数据和大规模数据集时仍存在计算复杂度高的挑战,未来将探索更高效的扩展方法。

全部论文PDF版可以关注工棕号{AI爱因斯坦}

回复  “多模态 ”领取~

2.GraphTransfer: A Generic Feature Fusion Framework for Collaborative

Filtering

本文提出了GraphTransfer,一种通用的特征融合框架,用于基于图神经网络的协同过滤任务。

该框架通过图嵌入方法从用户-物品交互图中提取图特征,并通过图卷积网络从用户-用户和物品-物品交互图中提取辅助特征,最后通过交叉融合模块有效融合这两种特征,提升推荐性能。

  • 创新点

1.设计了基于图卷积网络的辅助特征提取模块,能够从用户-用户和物品-物品交互图中高效提取辅助特征。

2.提出了通用的特征融合框架GraphTransfer,通过交叉融合模块以“学习融合”的方式有效融合图特征和辅助特征。

3.通过理论分析和实验验证,证明了GraphTransfer在多种场景下的通用性和有效性,能够显著提升协同过滤算法的性能。

  • 研究结论

1.GraphTransfer在多个公开数据集上的实验结果表明,其性能优于现有的特征融合方法。

2.引入辅助特征可以有效缓解图神经网络中的过平滑问题,提升推荐算法的准确性。

3.GraphTransfer在融合不同时间段的特征、不同模型提取的特征以及图特征与文本特征等场景中表现出高度的通用性。

全部论文PDF版可以关注工棕号{AI爱因斯坦}

回复  “多模态 ”领取~

3.Graph-based multi-Feature fusion method for speech emotion recognition

文章提出一种基于图的语音特征融合方法用于语音情感识别,通过学习多维边特征描述特征间关系,在 SEWA 数据集上取得良好效果,验证了方法的有效性。

  • 创新点

1.首次将多维边特征应用于基于图的跨语料库语音情感识别任务,显式建模音频特征关系。

2.提出新的语音特征融合方法,利用跨注意力机制有效提取新特征并更新多维边特征。

3.实验验证了该方法在 SEWA 数据集上的有效性,相比基线有显著性能提升。

  • 研究结论

1.基于图的多特征融合方法在语音情感识别任务上优于基线方法,能有效融合语音特征,提高预测准确率。

2.多维边特征可表达不同语音特征间关键信息,对提升模型性能至关重要,消融实验验证了其有效性。

3.研究存在局限,未来将纳入更多语音特征和跨语料库数据集,进一步优化方法。

全部论文PDF版可以关注工棕号{AI爱因斯坦}

回复  “多模态 ”领取~

顶会投稿交流群来啦!

欢迎大家加入顶会投稿交流群一起交流~这里会实时更新AI领域最新资讯、顶会最新动态等信息~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值