XAI + SHAP + 优化算法:能源预测与模型解释的突破!

近年来,可解释人工智能(XAI)技术发展迅速,尤其在能源消耗预测领域,结合SHAP值和优化算法的模型不仅提升了预测精度,还增强了模型的可解释性,为节能减排提供了有力支持。

通过引入SHAP聚类和混合方法,如C-SHAP,极大地提高了解释效率和模型适应性。

可广泛应用于能源管理、医疗诊断等领域,帮助专业人士更好地理解模型决策,提升决策效率和准确性。

我整理了9【SHAP可解释性】的相关论文,全部论文PDF版可以关注工棕号{AI因斯坦}

回复  “shap聚类”领取~

1.Shapecomplexity in cluster analysis

文章提出利用形状复杂度确定聚类分析前数据缩放因子的方法。通过实验对比多种缩放方案,验证该方法在多数数据集上可提升聚类效果,为聚类分析提供了新的预处理思路。

  • 创新点

1.引入形状复杂度概念,突破传统基于统计的缩放方法,从数据形状角度确定缩放因子,为聚类分析提供新视角。

2.借助形状复杂度的径向不变性,构建约束非线性规划问题获取缩放因子,优化聚类前数据缩放过程,提高聚类效率。

3.实验验证了基于形状复杂度的缩放因子在多个数据集上效果良好,为不同数据特性的聚类问题提供了更有效的处理方式 。

  • 研究结论

1.基于形状复杂度生成的缩放因子在多数数据集上表现优于传统缩放方法,能提升 k-means 聚类的效果。

2.该方法并非完全自动化,部分数据集需结合领域知识和数据可视化进行分析,但仍为聚类分析提供了有效工具。

3.提出的方法在处理大规模数据集时存在计算量较大的问题,未来可借助并行计算和数据降维技术加以改善 。

全部论文PDF版可以关注工棕号{AI因斯坦}

回复  “shap聚类”领取~

2.Shapley-based Explainable AI for Clustering  Applications in Fault Diagnosis 

and Prognosis 

文章提出基于 Shapley 值的聚类框架用于故障诊断和预测。通过半导体制造和涡轮发动机数据集案例,验证该框架在半监督学习场景下的有效性,提升聚类质量和可解释性。

  • 创新点

1.拓展 Shapley 值应用,构建新聚类框架,涵盖无监督、半监督和全监督聚类,适应多种工业场景下的故障诊断和预测需求。

2.利用 Shapley 值解释模型预测,得到高精度决策规则,从原始特征层面描述故障相关聚类,为故障诊断提供清晰依据。

3.在不同数据类型和监督水平的案例中验证框架,证明其在处理类不平衡、弱标记数据时能有效提升聚类质量和可解释性 。

  • 研究结论

1.基于 Shapley 值的半监督聚类在半导体制造案例中表现优异,相比无监督聚类显著减少未聚类样本,提升聚类质量。

2.在涡轮发动机案例中,该框架能准确预测故障部件,且多数聚类可由高精度规则描述,有助于发现故障根本原因。

3.研究为工业应用中的故障诊断和预测提供了可解释的 AI 方法,虽存在计算成本高的问题,但具有广阔的应用前景 。

全部论文PDF版可以关注工棕号{AI因斯坦}

回复  “shap聚类”领取~

3.C-SHAP: AHybrid Method for Fast and Efficient Interpretability

文章针对 SHAP 计算成本高的问题,提出 C-SHAP 混合方法。通过实验对比多种数据集和模型,验证其能大幅缩短执行时间且保持特征选择准确性,为机器学习模型可解释性提供新方案。

  • 创新点

1.创新性地将 K-means 聚类与 SHAP 相结合,提出 C-SHAP 方法,降低 SHAP 计算特征归因的计算量,提高执行效率。

2.在多种机器学习模型和不同数据集上进行实验,结果表明 C-SHAP 在减少执行时间的同时,能保持与 SHAP 相似的特征选择准确性。

3.拓宽聚类概念应用范围,使 C-SHAP 可适用于更多通用模型和数据集,为不同领域提供高效的模型解释方案 。

  • 研究结论

1.C-SHAP 在多个数据集和多种模型上均能显著减少执行时间,如在糖尿病数据集的 SVC 模型中,执行时间从近 2000 秒减至 0.21 秒。

2.该方法在特征选择方面与 SHAP 高度一致,能准确识别重要特征,在不同任务和模型中表现稳定。

3.C-SHAP 存在一些局限性,如固定聚类数、对大规模复杂数据集的适应性等,未来可通过动态聚类等方法改进 。

全部论文PDF版可以关注工棕号{AI因斯坦}

回复  “shap聚类”领取~

顶会投稿交流群来啦!

欢迎大家加入顶会投稿交流群一起交流~这里会实时更新AI领域最新资讯、顶会最新动态等信息

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值